1 |
Design, Fabrication, And Experimental Evaluation Of Microchannel Heat Sinks In Cpu CoolingKoyuncuoglu, Aziz 01 September 2010 (has links) (PDF)
A novel complementary metal oxide semiconductor (CMOS) compatible microchannel heat sink is designed, fabricated, and tested for electronic cooling applications. The proposed microchannel heat sink requires no design change of the electronic circuitry underneath. Therefore, microchannels can be fabricated on top of the finished CMOS wafers by just adding a few more steps to the fabrication flow. Combining polymer (parylene C) and metal (copper) structures, a high performance microchannel heat sink can be easily manufactured on top of the electronic circuits, forming a monolithic cooling system.
In the design stage, computer simulations of the microchannels with several different dimensions have been performed. Microchannels made of only parylene showed poor heat transfer performance as expected since the thermal conductivity of parylene C is very low. Therefore an alternative design comprising structural parylene layer and embedded metal layers has been modeled. Copper is selected as the metal due to its simple fabrication and very good thermal properties. The results showed that the higher the copper surface area the better the thermal performance of the heat sinks. Based on the modeling results, the final test structures are designed with full copper sidewalls with a parylene top wall.
Several different microchannel test chips have been fabricated in METU-MEMS Research & / Application Center cleanroom facilities. The devices are tested with different flow rates and heat loads. During the tests, it was shown that the test devices can remove about 126 W/cm2 heat flux from the chip surface while keeping the chip temperature at around 90° / C with a coolant flow rate of 500 &mu / l/min per channel.
|
2 |
Quadrature Error Compensation And Its Effects On The Performance Of Fully Decoupled Mems GyroscopesTatar, Erdinc 01 October 2010 (has links) (PDF)
This thesis, for the first time in the literature, presents the effect of quadrature error compensation on the performance of a fully decoupled MEMS gyroscope and provides experimental data on the sources of quadrature error. Dedicated quadrature error cancellation electrodes operating with only differential DC potentials are designed. Gyroscopes with intentionally placed imperfections are fabricated with SOG based SOI process which provides higher yield and uniformity compared to SOG process. Tests show that the fully closed loop system with quadrature cancellation operates as expected. Gyroscope performance is improved up to 7.8 times for bias instability, 10 times for angle random walk (ARW) and 800 times for output offset with quadrature cancellation. The actual improvement is higher since some sensors cannot be operated without quadrature cancellation and they are not included in improvement calculations. The best obtained performance is bias instability of 0.39
|
3 |
Advancements of a Silicon-on-Insulator Thermoelectric Sensor for Biomedical ApplicationsAlexis Margaret Corda (10716507) 30 April 2021 (has links)
Heat can be used as a reliable biomarker of cell metabolism. Assessing changes in metabolic activity is useful to study normal bioactivity or factors which may stimulate or inhibit cell proliferation. Methods which measure the heat of cell metabolism over time must be sensitive to the small changes. Thermoelectric sensors, which work by the Seebeck effect, are one method which has shown adequate sensitivity. This type of sensor directly converts heat energy into electrical energy without the use of a power source. Current research into sensors for cell metabolism may list lengthy, complex, and expensive procedures or include materials with rare or toxic elements. This work establishes a design approach of a silicon-based thermoelectric sensor for cell metabolism measurement which incorporates abundant and non-toxic materials and a simple procedure based on standard MEMS fabrication methods. The foundation for the sensor design is discussed. Fabrication was done using optical lithography, reactive ion etching, and electron beam evaporation which are standard and well known in industry. Sensor quality was characterized successfully based on the defined design parameters. Preliminary data has been recorded on the Coli cell metabolism. Finally, recommendations to improve heat insulation, include sensor calibration, and optimize manufacturing parameters are given for future work on this design to advance sensitivity and commercial potential.
|
4 |
Integration of Process-Incompatible Materials for Microfabricated Polymer-Based Neural InterfacesHess, Allison Elizabeth 27 April 2011 (has links)
No description available.
|
5 |
PARAMETRIC EXPLORATION OF AUTOMATED FABRICATION AND ANODIC BONDING OF CPS FOR LHP APPLICATIONSPARIMI, SRINIVAS 17 April 2003 (has links)
No description available.
|
6 |
A High Performance Automatic Mode-matched Mems GyroscopeSonmezoglu, Soner 01 September 2012 (has links) (PDF)
This thesis, for the first time in the literature, presents an automatic mode-matching system that uses the phase relationships between the residual quadrature and drive signals in a gyroscope to achieve and maintain the frequency matching condition, and also the system allows controlling the system bandwidth by adjusting the closed loop parameters of the sense mode controller, independently from the mechanical sensor bandwidth. There are two mode-matching methods, using the proposed mode-matching system, presented in this thesis. In the first method, the frequency matching between the resonance modes of the gyroscope is automatically accomplished by changing the proof mass potential. The main motivation behind the first method is to tune the sense mode resonance frequency with respect to the drive mode resonance frequency using the electrostatic tuning capability of the sense mode. In the second method, the mode-matched gyroscope operation is accomplished by using dedicated frequency tuning electrodes that only provides a capability of tuning the sense mode resonance frequency generating an electrostatic spring effect on the sense frame, independently from the proof mass potential. This study mainly focuses on the second method because the proof mass potential variation is not desired during the gyroscope operation since the proof mass potential directly affects the drive and sense mode dynamics of the gyroscope. Therefore, a single-mass fully-decoupled gyroscope including the dedicated frequency tuning electrodes are designed. To identify mode shapes and mode frequencies of the designed gyroscope, FEM simulations are performed. The designed gyroscopes are fabricated using SOI-based SOG process. The fabrication imperfections are clarified during the formation of the structural layer of the gyroscope. Next, the closed loop controllers are designed for the drive amplitude control, sense force-feedback, quadrature cancellation, and mode-matching regarding the phase relationship between the quadrature and drive signals. Mode-matching is achieved by using a closed loop controller that provides a DC tuning potential. The mode-matching system consisting of vacuum packaged sensor, drive amplitude control, sense force-feedback, quadrature cancellation, and mode-matching modules is implemented on a printed circuit board (PCB), and then the system level tests are performed.
Tests illustrate that the mode-matching system operates in a desired manner. Test results demonstrate that the performances of the studied MEMS gyroscopes are improved up to 2.6 times in bias instability and 2 times in ARW under the mode-matched condition compared to the mismatched (~200 Hz) condition, reaching down to 0.73 ° / /hr and 0.024 ° / /&radic / hr, respectively. At the mode-matched gyroscope operation, the better performance is obtained to be bias instability of 0.87
|
7 |
Wafer Level Vacuum Packaging Of Mems Sensors And ResonatorsTorunbalci, Mert Mustafa 01 February 2011 (has links) (PDF)
This thesis presents the development of wafer level vacuum packaging processes using Au-Si eutectic and glass frit bonding contributing to the improvement of packaging concepts for a variety of MEMS devices. In the first phase of this research, micromachined resonators and pirani vacuum gauges are designed for the evaluation of the vacuum package performance. These designs are verified using MATLAB and Coventorware finite element modeling tool. Designed resonators and pirani vacuum gauges and previously developed gyroscopes with lateral feedthroughs are fabricated with a newly developed Silicon-On-Glass (SOG) process. In addition to these, a process for the fabrication of similar devices with vertical feedthroughs is initiated for achieving simplified packaging process and lower parasitic capacitances. Cap wafers for both types of devices with lateral and vertical feedthroughs are designed and fabricated. The optimization of Au-Si eutectic bonding is carried out on both planar and non-planar surfaces. The bonding quality is evaluated using the deflection test, which is based on the deflection of a thinned diaphragm due to the pressure difference between inside and outside the package. A 100% yield bonding on planar surfaces is achieved at 390º / C with a
v
holding time and bond force of 60 min and 1500 N, respectively. On the other hand, bonding on surfaces where 0.15&mu / m feedthrough lines exist can be done at 420º / C with a 100% yield using same holding time and bond force. Furthermore, glass frit bonding on glass wafers with lateral feedthroughs is performed at temperatures between 435-450º / C using different holding periods and bond forces. The yield is varied from %33 to %99.4 depending on the process parameters. The fabricated devices are wafer level vacuum packaged using the optimized glass frit and Au-Si eutectic bonding recipes. The performances of wafer level packages are evaluated using the integrated gyroscopes, resonators, and pirani vacuum gauges. Pressures ranging from 10 mTorr to 60 mTorr and 0.1 Torr to 0.7 Torr are observed in the glass frit packages, satisfying the requirements of various MEMS devices in the literature. It is also optically verified that Au-Si eutectic packages result in vacuum cavities, and further study is needed to quantify the vacuum level with vacuum sensors based on the resonating structures and pirani vacuum gauges.
|
8 |
Études de systèmes thermo-fluidiques auto-oscillants pour des applications de récupération d'énergie thermiqueMonin, Thomas January 2017 (has links)
Les progrès technologiques considérables menés depuis ces dernières décennies
nous permettent aujourd’hui de disséminer dans notre environnement une nuée de
noeuds de capteurs communicants combinant la taille micrométrique et la consommation
dérisoire caractéristiques des MEMS avec la puissance des protocoles de
communications Internet. L’Internet des Objets, formé par ce réseau de capteurs,
possède le potentiel d‘optimiser un grand panel d’applications industrielles et domotiques.
Le nouveau défi, que la communauté du Energy Harvesting tente de relever
depuis une décennie maintenant, est de rendre ces noeuds de capteurs autonomes
en les alimentant grâce à l’énergie perdue dans leur environnement.
Dans ces travaux de recherche, nous explorons le potentiel d’un principe thermo-fluidique
auto-oscillant pour la génération d’énergie utile à partir d’une source thermique
de faible qualité. L’implémentation de cette technologie en tant que machine
thermique est étudiée et mène à la caractérisation d’un nouveau cycle thermodynamique
caractéristique du SOFHE (Self Oscillating Fluidic Heat Engine).
Nous montrons, par une approche phénoménologique, que notre machine thermique
se comporte comme un oscillateur mécanique, excité par les évaporations
et condensations successives du fluide de travail. Ces changements de phase alternatifs
mettent en mouvement une colonne d’eau, jouant le rôle de masse, couplée
à une zone de vapeur, jouant le rôle d’un ressort.
Une étude de l’influence du couplage du SOFHE avec un transducteur électromécanique,
représenté par un oscillateur, mène à la conception et la fabrication d’une spirale
piézoélectrique. L’intégration de cette spirale à notre machine thermique forme
un générateur thermo-électrique dont les capacités de conversion sont démontrées
par la charge d’une capacité.
Finalement, la miniaturisation du principe thermo-fluidique SOFHE est rendue possible
par la réalisation d’un procédé de fabrication utilisant les techniques MEMS.
Des dispositifs miniatures parviennent à exhiber un comportement oscillatoire montrant
le potentiel d’intégration de cette technologie. / Abstract : The tremendous technological progresses realized in the last decades allow us to
swarm our environment with Wireless Sensors Networks. These WSNs combine the
MEMS’ miniature size and low energy consumption, and the powerful Internet communication
protocols. This Internet of Things shows great potential in many applications
such as industry or housing. For a decade now, the Energy Harvesting community
wants to build autonomous WSNs by enabling them to feed off energy wastes.
In this work, we study the electricity generation capabilities of a Self-Oscillating Fluidic
Heat Engine (SOFHE) and present its characteristic thermodynamic cycle. Our
model shows that the SOFHE acts as a mechanical resonator excited by the successive
evaporation and condensation processes underwent by the working fluid.
These phase changes put a liquid mass in motion, coupled with a vapor spring. The
coupling of our heat engine with an electromechanical transducer is studied and
leads to a piezoelectric spiral conception and fabrication. Their association forms a
thermo-electrical generator able to power and charge an electrical capacitor. Eventually,
we demonstrate the miniaturization prospects and integration potential of this
SOFHE technology. A micro-fabrication process enables a SOFHE MEMS implementation.
Our process includes a deep glass wet etching step as well as a Au-Si
eutectic wafer bonding.
|
Page generated in 0.031 seconds