• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kinematic State Estimation using Multiple DGPS/MEMS-IMU Sensors

Ku, Do Yeou 21 October 2022 (has links) (PDF)
Animals have evolved over billions of years and understanding these complex and intertwined systems have potential to advance the technology in the field of sports science, robotics and more. As such, a gait analysis using Motion Capture (MOCAP) technology is the subject of a number of research and development projects aimed at obtaining quantitative measurements. Existing MOCAP technology has limited the majority of studies to the analysis of the steady-state locomotion in a controlled (indoor) laboratory environment. MOCAP systems such as the optical, non-optical acoustic and non-optical magnetic MOCAP systems require predefined capture volume and controlled environmental conditions whilst the non-optical mechanical MOCAP system impedes the motion of the subject. Although the non-optical inertial MOCAP system allows MOCAP in an outdoor environment, it suffers from measurement noise and drift and lacks global trajectory information. The accuracy of these MOCAP systems are known to decrease during the tracking of the transient locomotion. Quantifying the manoeuvrability of animals in their natural habitat to answer the question “Why are animals so manoeuvrable?” remains a challenge. This research aims to develop an outdoor MOCAP system that will allow tracking of the steady-state as well as the transient locomotion of an animal in its natural habitat outside a controlled laboratory condition. A number of researchers have developed novel MOCAP systems with the same aim of creating an outdoor MOCAP system that is aimed at tracking the motion outside a controlled laboratory (indoor) environment with unlimited capture volume. These novel MOCAP systems are either not validated against the commercial MOCAP systems or do not have comparable sub-millimetre accuracy as the commercial MOCAP systems. The developed DGPS/MEMS-IMU multi-receiver fusion MOCAP system was assessed to have global trajectory accuracy of _0:0394m, relative limb position accuracy of _0:006497m. To conclude the research, several recommendations are made to improve the developed MOCAP system and to prepare for a field-testing with a wild animal from a family of a terrestrial megafauna.
2

Mems Sensor Based Underwater Ahrs(attitude And Heading Reference System) Aided By Compass And Pressure Sensor

Ozgeneci, Ercin Mehmet 01 September 2012 (has links) (PDF)
Attitude and Heading angles are crucial parameters for navigation. Conventional navigation methods mostly uses IMU and GPS devices to calculate these angles. MEMS technology offers small sized, low cost IMU sensors with moderate performance. However, GPS cannot be used in underwater. Therefore, different aiding sensors are used in underwater vehicles in order to increase the accuracy. As the accuracy of devices increases, the cost of these devices also increases. In this thesis, rather than using GPS and high quality IMU sensors, low cost MEMS IMU sensor is used together with a magnetometer and a pressure sensor as aiding sensors. Considering the IMU error model and motion dynamics, two systems are designed and simulated using real data. The results seem to be satisfactory and using pressure sensor as an aiding sensor improves the attitude angles estimation.
3

Towards Improved Inertial Navigation By Reducing Errors Using Deep Learning Methodology

Chen, Hua 13 July 2022 (has links)
No description available.

Page generated in 0.0213 seconds