11 |
Warm Hydroforming Characteristics of Stainless Steel Sheet MetalsBillur, Eren 05 December 2008 (has links)
For numerical modeling and predictive analysis of warm hydroforming, better understanding of material properties (i.e. Flow curves) is required at elevated temperatures and high strains. Hydraulic bulge testing is a suitable method to obtain this information. However, analysis of the test data is not standardized as there are numerous approaches developed and adopted throughout the years. In this study, first, different approaches for hydraulic bulge analysis were compared with stepwise experiments to determine the best combination of approaches in obtaining accurate flow curves at different temperatures and strain rates. Then, three different grades of stainless steels (AISI 201, 301 and 304) were tested at various hydroforming conditions to determine the effect of pressure, temperature and strain rate on formability (i.e. cavity filling and thinning). These experimental findings were then used to be compared with predicted values from FEA. Results showed that material model works accurately in predicting the formability of materials in warm hydroforming.
|
12 |
Wear in sheet metal formingGåård, Anders January 2008 (has links)
<p>The general trend in the car body manufacturing industry is towards low-series production and reduction of press lubricants and car weight. The limited use of press lubricants, in combination with the introduction of high and ultra-high strength sheet materials, continuously increases the demands of the forming tools. To provide the means of forming new generations of sheet material, development of new tool materials with improved galling resistance is required, which may include tailored microstructures, introducing of specific(MC, M(C,N))carbides and nitrides, coatings and improved surface finish. In the present work, the wear mechanisms in real forming operations have been studied and emulated on a laboratory scale by developing a test equipment. The wear mechanisms identified in the real forming process, were distinguished into a sequence of events consisting of initial local adhesive wear of the sheets resulting in transfer of sheet material to the tool surfaces. Successive forming operations led to growth of the transfer layer and initiation of scratching of the sheets. Finally, scratching changed into severe adhesive wear, associated with gross macroscopic damage. The wear process was repeated in the laboratory test-equipment in sliding between several tool materials, ranging from cast iron to conventional ingot cast tool steels to advanced powder metallurgy tool steel, against dual-phase carbon steel sheets. By use of the test-equipment, selected tool materials were ranked regarding wear resistance in sliding against ferritic-martensitic steel sheets at different contact pressures.</p><p>Wear in sheet metal forming is mainly determined by adhesion; initially between the tool and sheet surface interaction and subsequently, after initiation of material transfer, between a sheet to sheet contact. Atomic force microscopy force curves showed that adhesion is sensitive to both chemical composition and temperature. By alloying of iron with 18wt.% Cr and 8wt.% Ni, alloying in itself, or changes in crystal structure, led to an increase of 3 times in adhesion at room temperature. Hence, alloying may be assumed a promising way for control of adhesive properties. Additionally, frictional heating should be controlled to avoid high adhesion as, generally, adhesion was found to increase with increasing temperature for all investigated materials.</p>
|
13 |
Gaussian Distribution Approximation for Localized Effects of Input ParametersRzepniewski, Adam K., Hardt, David E. 01 1900 (has links)
In the application of cycle-to-cycle control to manufacturing processes, the model of the process reduces to a gain matrix and a pure delay. For a general multiple input – multiple output process, this matrix shows the degree of influence each input has on each output. For a system of high order, determining this gain matrix requires excessive numbers of experiments to be performed, and thus a simplified, but non-ideal form for the gain matrix must be developed. In this paper, the model takes the form of a Gaussian distribution with experimentally determined standard deviation and scaling coefficients. Discrete die sheet metal forming, a multiple input-multiple output process with high dimensionality, is chosen as a test application. Results of the prediction capabilities of the Gaussian model, as well as those of two previously existing models, are presented. It is shown that the Gaussian distribution model does the best job of predicting the output for a given input. The model’s invariance over a set of different formed parts is also presented. However, as shown in the companion paper on cycle-to-cycle control, the errors inherent in this model will cause non-ideal performance of the resulting control system. However, this model appears to be the best form for this problem, given the limit of minimal experimentation. / Singapore-MIT Alliance (SMA)
|
14 |
Blank optimization in sheet metal forming using finite element simulationGoel, Amit 12 April 2006 (has links)
The present study aims to determine the optimum blank shape design for the deep drawing of arbitrary shaped cups with a uniform trimming allowance at the flange i.e. cups without ears. This earing defect is caused by planar anisotropy in the sheet and the friction between the blank and punch/die. In this research, a new method for optimum blank shape design using finite element analysis has been proposed. Explicit non-linear finite element (FE) code LSDYNA is used to simulate the deep drawing process. FE models are constructed incorporating the exact physical conditions of the process such as tooling design like die profile radius, punch corner radius, etc., material used, coefficient of friction, punch speed and blank holder force. The material used for the analysis is mild steel. A quantitative error metric called shape error is defined to measure the amount of earing and to compare the deformed shape and target shape set for each stage of the analysis. This error metric is then used to decide whether the blank needs to be modified or not. The cycle is repeated until the converged results are achieved. This iterative design process leads to optimal blank shape. In order to verify the proposed method, examples of square cup and cylindrical cup have been investigated. In every case converged results are achieved after a few iterations. So through the investigation the proposed systematic method of optimal blank design is found to be very effective in the deep drawing process and can be further applied to other stamping applications.
|
15 |
Wear in sheet metal formingGåård, Anders January 2008 (has links)
The general trend in the car body manufacturing industry is towards low-series production and reduction of press lubricants and car weight. The limited use of press lubricants, in combination with the introduction of high and ultra-high strength sheet materials, continuously increases the demands of the forming tools. To provide the means of forming new generations of sheet material, development of new tool materials with improved galling resistance is required, which may include tailored microstructures, introducing of specific(MC, M(C,N))carbides and nitrides, coatings and improved surface finish. In the present work, the wear mechanisms in real forming operations have been studied and emulated on a laboratory scale by developing a test equipment. The wear mechanisms identified in the real forming process, were distinguished into a sequence of events consisting of initial local adhesive wear of the sheets resulting in transfer of sheet material to the tool surfaces. Successive forming operations led to growth of the transfer layer and initiation of scratching of the sheets. Finally, scratching changed into severe adhesive wear, associated with gross macroscopic damage. The wear process was repeated in the laboratory test-equipment in sliding between several tool materials, ranging from cast iron to conventional ingot cast tool steels to advanced powder metallurgy tool steel, against dual-phase carbon steel sheets. By use of the test-equipment, selected tool materials were ranked regarding wear resistance in sliding against ferritic-martensitic steel sheets at different contact pressures. Wear in sheet metal forming is mainly determined by adhesion; initially between the tool and sheet surface interaction and subsequently, after initiation of material transfer, between a sheet to sheet contact. Atomic force microscopy force curves showed that adhesion is sensitive to both chemical composition and temperature. By alloying of iron with 18wt.% Cr and 8wt.% Ni, alloying in itself, or changes in crystal structure, led to an increase of 3 times in adhesion at room temperature. Hence, alloying may be assumed a promising way for control of adhesive properties. Additionally, frictional heating should be controlled to avoid high adhesion as, generally, adhesion was found to increase with increasing temperature for all investigated materials.
|
16 |
The Positive Effect of Nitrogen Alloying of Tool Steels Used in Sheet Metal FormingHeikkilä, Irma January 2013 (has links)
Sheet metal forming processes are mechanical processes, designed to make products from metal sheet without material removal. These processes are applied extensively by the manufacturing industry to produce commodities such as heat exchangers or panels for automotive applications. They are suitable for production in large volumes. A typical problem in forming operations is accumulation of local sheet material adherents onto the tool surface, which may deteriorate the subsequent products. This tool failure mechanism is named galling. The aim of this work is to explain the mechanisms behind galling and establish factors how it can be reduced. The focus of this work is on the influence of tool material for minimum risk of galling. Experimental tool steels alloyed with nitrogen were designed and manufactured for systematic tribological evaluation. Reference tool materials were conventional cold forming tool steels and coated tool steels. The sheet material was austenitic stainless steel AISI 304, which is sensitive for galling. A variety of lubricants ranging from low to high viscous lubricants were used in the evaluation. The properties of the tool materials were characterized analytically and their tribological evaluation included industrial field tests and several laboratory-scale tests. The testing verified that nitrogen alloying has a very positive effect for improving galling resistance of tool steels. Tool lives comparable to the coated tool steels were achieved even with low viscous lubricants without poisonous additives. The hypothesis used for the explanation of the positive effect of nitrogen alloying is based on the critical local contact temperature at which the lubrication deteriorates. Therefore, the contact mechanism at the tool-sheet interface and the local energy formation were studied systematically. Theoretical considerations complemented with FEA analysis showed that a small size of hard particles with a high volume fraction gives low local contact loads, which leads to low frictional heating. Also, an even spacing between the hard particles and their frictional properties are of importance. Nitrogen alloyed tool steels have these properties in the form of small carbonitrides. The finding of this work can be applied to a wide range of applications that involve sliding metal contacts under severe tribological loading.
|
17 |
Increased Formability and the Effects of the Tool/Sheet Interaction in Electromagnetic Forming of Aluminum Alloy SheetImbert Boyd, Jose January 2005 (has links)
This thesis presents the results of experimental and numerical work carried out to determine if electromagnetic forming (EMF) increases the formability of aluminum alloy sheet and, if so, to determine the mechanisms that play a role in the increased formability. To this end, free form (open cavity) and conical in-die samples were produced to isolate high strain rate constitutive and inertial effects from the effects of the interaction between the die and the sheet. Aluminum alloys AA5754 and AA6111 in the form of 1mm sheet were chosen since they are currently used in automotive production and are candidates for lightweight body panels. The experiments showed significant increases in formability in the conical die samples in areas where significant contact with the tool occurred, with no significant increase recorded for the free-formed samples. This indicates that the tool/sheet interaction is playing the dominant role in the increase in formability observed. Metallographic and fractographic analysis performed on the samples showed evidence of microvoid damage suppression, which may be a contributing factor to the increase in formability. Numerical modeling was undertaken to analyse the details of the forming operation and to determine the mechanisms behind the increased formability. The numerical calculations were performed with an explicit dynamic finite element structural code, using an analytical electromagnetic pressure distribution. Microvoid damage evolution was predicted using a microvoid damage subroutine based on the Gurson-Tvergaard-Needleman constitutive model. From the models it has been determined that the free forming process is essentially a plane-stress process. In contrast, the tool/sheet interaction produced in cone forming makes the process unique. When the sheet makes contact with the tool, it is subject to forces generated due to the impact, and very rapid bending and straightening. These combine to produce complex non-linear stress and strain histories, which render the process non-plane stress and thus make it significantly different from conventional sheet forming processes. Another characteristic of the process is that the majority of the plastic deformation occurs at impact, leading to strain rates on the order of 10,000 s<sup>-1</sup>. It is concluded that the rapid impact, bending and straightening that results from the tool/sheet interaction is the main cause of the increased formability observed in EM forming.
|
18 |
Increased Formability and the Effects of the Tool/Sheet Interaction in Electromagnetic Forming of Aluminum Alloy SheetImbert Boyd, Jose January 2005 (has links)
This thesis presents the results of experimental and numerical work carried out to determine if electromagnetic forming (EMF) increases the formability of aluminum alloy sheet and, if so, to determine the mechanisms that play a role in the increased formability. To this end, free form (open cavity) and conical in-die samples were produced to isolate high strain rate constitutive and inertial effects from the effects of the interaction between the die and the sheet. Aluminum alloys AA5754 and AA6111 in the form of 1mm sheet were chosen since they are currently used in automotive production and are candidates for lightweight body panels. The experiments showed significant increases in formability in the conical die samples in areas where significant contact with the tool occurred, with no significant increase recorded for the free-formed samples. This indicates that the tool/sheet interaction is playing the dominant role in the increase in formability observed. Metallographic and fractographic analysis performed on the samples showed evidence of microvoid damage suppression, which may be a contributing factor to the increase in formability. Numerical modeling was undertaken to analyse the details of the forming operation and to determine the mechanisms behind the increased formability. The numerical calculations were performed with an explicit dynamic finite element structural code, using an analytical electromagnetic pressure distribution. Microvoid damage evolution was predicted using a microvoid damage subroutine based on the Gurson-Tvergaard-Needleman constitutive model. From the models it has been determined that the free forming process is essentially a plane-stress process. In contrast, the tool/sheet interaction produced in cone forming makes the process unique. When the sheet makes contact with the tool, it is subject to forces generated due to the impact, and very rapid bending and straightening. These combine to produce complex non-linear stress and strain histories, which render the process non-plane stress and thus make it significantly different from conventional sheet forming processes. Another characteristic of the process is that the majority of the plastic deformation occurs at impact, leading to strain rates on the order of 10,000 s<sup>-1</sup>. It is concluded that the rapid impact, bending and straightening that results from the tool/sheet interaction is the main cause of the increased formability observed in EM forming.
|
19 |
Blank optimization in sheet metal forming using finite element simulationGoel, Amit 12 April 2006 (has links)
The present study aims to determine the optimum blank shape design for the deep drawing of arbitrary shaped cups with a uniform trimming allowance at the flange i.e. cups without ears. This earing defect is caused by planar anisotropy in the sheet and the friction between the blank and punch/die. In this research, a new method for optimum blank shape design using finite element analysis has been proposed. Explicit non-linear finite element (FE) code LSDYNA is used to simulate the deep drawing process. FE models are constructed incorporating the exact physical conditions of the process such as tooling design like die profile radius, punch corner radius, etc., material used, coefficient of friction, punch speed and blank holder force. The material used for the analysis is mild steel. A quantitative error metric called shape error is defined to measure the amount of earing and to compare the deformed shape and target shape set for each stage of the analysis. This error metric is then used to decide whether the blank needs to be modified or not. The cycle is repeated until the converged results are achieved. This iterative design process leads to optimal blank shape. In order to verify the proposed method, examples of square cup and cylindrical cup have been investigated. In every case converged results are achieved after a few iterations. So through the investigation the proposed systematic method of optimal blank design is found to be very effective in the deep drawing process and can be further applied to other stamping applications.
|
20 |
Influence of primary precipitate shape, size volume fraction and distribution in PM tool steels on galling resistance / Påverkan av primära karbiders storlek, volymfraktion och distribution i PM verktygsståls motstånd mot gallingAndersson, Oscar January 2015 (has links)
In sheet metal forming (SMF), the major failure reason is galling. Galling is a process of different wear stages that leads to destruction of both the forming tool and the sheet metal working piece and is, because of that, of big economic importance for the SMF industries. Therefore, investigations and researches about how tool steels microstructure affect the tool steels galling resistance is of high priority. In the present work, different carbide properties were studied to find out how their properties affected the tool materials galling resistance. The investigated carbide properties were: Shape and size of the carbides Carbide volume fraction Carbide distribution in the microstructure The investigation included three tools, all made of the PM tool steel S390, that were heattreated differently in order to achieve different carbide properties but still maintain the same hardness. The tools were galling tested in a slider-on-flat-surface (SOFS) tribometer to determine their galling resistances. In a scanning surface electron microscope (SEM) the tools galling marks were analyzed to find explanations for the SOFS tribometer results and the connection to the tools different carbide properties. The investigations most galling resistant tool was the tool that had the microstructure with largest carbides which were distributed at grain boundaries and the second highest carbide volume fraction among the investigated tools.
|
Page generated in 0.0233 seconds