1 |
Assessment of passive decay heat removal in the General Atomics Modular Helium ReactorCocheme, Francois Guilhem 17 February 2005 (has links)
The purpose of this report is to present the results of the study and analysis of loss-of-coolant and loss-of-flow simulations performed on the Modular Helium Reactor developed by General Atomics using the thermal-hydraulics code RELAP5-3D/ATHENA. The MHR is a high temperature gas cooled reactor. It is a prismatic core concept for New Generation Nuclear Plant (NGNP). Very few reactors of that kind have been designed in the past. Furthermore, the MHR is supposed to be a highly passively safe concept. So there are high needs for numerical simulations in order to confirm the design. The project is dedicated to the assessment of the passive decay heat capabilities of the reactor under abnormal transient conditions. To comply with the requirements of the NGNP, fuel and structural temperatures must be kept under design safety limits under any circumstances. During the project, the MHR has been investigated: first under steady-state conditions and then under transient settings. The project confirms that satisfying passive decay heat removal by means of natural heat transfer mechanisms (convection, conduction and radiation) occurs.
|
2 |
Assessment of passive decay heat removal in the General Atomics Modular Helium ReactorCocheme, Francois Guilhem 17 February 2005 (has links)
The purpose of this report is to present the results of the study and analysis of loss-of-coolant and loss-of-flow simulations performed on the Modular Helium Reactor developed by General Atomics using the thermal-hydraulics code RELAP5-3D/ATHENA. The MHR is a high temperature gas cooled reactor. It is a prismatic core concept for New Generation Nuclear Plant (NGNP). Very few reactors of that kind have been designed in the past. Furthermore, the MHR is supposed to be a highly passively safe concept. So there are high needs for numerical simulations in order to confirm the design. The project is dedicated to the assessment of the passive decay heat capabilities of the reactor under abnormal transient conditions. To comply with the requirements of the NGNP, fuel and structural temperatures must be kept under design safety limits under any circumstances. During the project, the MHR has been investigated: first under steady-state conditions and then under transient settings. The project confirms that satisfying passive decay heat removal by means of natural heat transfer mechanisms (convection, conduction and radiation) occurs.
|
3 |
Modeling of displacement damage in silicon carbide detectors resulting from neutron irradiationKhorsandi, Behrooz 08 March 2007 (has links)
No description available.
|
4 |
Development of a Dynamic Model of a Counterflow Compact Heat Exchanger for Simulation of the GT-MHR Recuperator using MATLAB and SimulinkHawn, David Phillip 27 August 2009 (has links)
No description available.
|
5 |
A Machine Learning Approach that Integrates Clinical Data and PTM Proteomics Identifies a Mechanism of ACK1 Activation and Stabilization in CancerLoku Balasooriyage, Eranga Roshan Balasooriya 08 August 2022 (has links)
Identification of novel cancer driver mutations is crucial for targeted cancer therapy, yet a difficult task especially for low frequency drivers. To identify cancer driver mutations, we developed a machine learning (ML) model to predict cancer hotspots. Here, we applied the ML program to 32 non-receptor tyrosine kinases (NRTKs) and identified 36 potential cancer driver mutations, with high probability mutations in 10 genes, including ABL1, ABL2, JAK1, JAK3, and ACK1. ACK1 is a member of the poorly understood ACK family of NRTKs that also includes TNK1. Although ACK1 is an established oncogene and high-interest therapeutic target, the exact mechanism of ACK1 regulation is largely unknown and there is still no ACK1 inhibitor in clinical use. The ACK kinase family has a unique domain arrangement with most notably, a predicted ubiquitin association (UBA) domain at its C-terminus. While the presence of a functional UBA domain on a kinase is unique to the ACK family, but the role of the UBA domain on ACK1 is unknown. Interestingly, the ML program identified the ACK1 Mig6 homology region (MHR) and UBA domains truncating mutation p633fs* as a cancer driver mutation. Our data suggest that the ACK1 UBA domain helps activate full-length ACK1 through induced proximity. It also acts as a mechanism of negative feedback by tethering ACK1 to ubiquitinated cargo that is ultimately degraded. Indeed, our preliminary data suggest that truncation of the ACK1 UBA stabilizes ACK1 protein levels, which results in spontaneous ACK1 oligomerization and activation. Furthermore, our data suggests removal of the MHR domain hyper activates ACK1. Thus, our data provide a model to explain how human mutations in ACK1 convert the kinase into an oncogenic driver. In conclusion, our data reveal a mechanism of ACK1 activation and potential strategies to target the kinase in cancer.
|
Page generated in 0.0157 seconds