• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ferroptosis as a Lytic Form of Cell Death in Pancreatic Ductal Adenocarcinoma Cell Lines

Taylor, Natalie M. 26 May 2023 (has links)
No description available.
2

Photoactivatable Organic and Inorganic Nanoparticles in Cancer Therapeutics and Biosensing

Mathew, Mona 01 January 2014 (has links)
In photodynamic therapy a photosensitizer drug is administered and is irradiated with light. Upon absorption of light the photosensitizer goes into its triplet state and transfers energy or an electron to oxygen to form reactive oxygen species (ROS). These ROS react with biomolecules in cells leading to cell damage and cell death. PDT has interested many researchers because of its non-invasiveness as compared to surgery, it leaves little to no scars, it is time and cost effective, it has potential for targeted treatment, and can be repeated as needed. Different photosensitizers such as porphyrines, chlorophylls, and dyes have been used in PDT to treat various cancers, skin diseases, aging and sun-damaged skin. These second generation sensitizers have yielded reduced skin sensitivity and improved extinction coefficients (up to ~ 105 L mol-1 cm-1). While PDT based on small molecule photosensitizers has shown great promise, several problems remain unsolved. The main issues with current sensitizers are (i) hydrophobicity leading to aggregation in aqueous media resulting in reduced efficacy and potential toxicity, (ii) dark toxicity of photosensitizers, (iii) non-selectivity towards malignant tissue resulting in prolonged cutaneous photosensitivity and damage to healthy tissue, (iv) limited light absorption efficiency, and (v) a lack of understanding of where the photosensitizer ends up in the tissue. In this dissertation research program, these issues were addressed by the development of conducting polymer nanoparticles as a next generation of photosensitizers. This choice was motivated by the fact that conducting polymers have large extinction coefficients ( > 107 L mol-1 cm-1), are able to undergo intersystem crossing to the triplet state, and have triplet energies that are close to that of oxygen. It was therefore hypothesized that such polymers could be effective at generating ROS due to the large excitation rate that can be generated. Conducting polymer nanoparticles (CPNPs) composed of the conducting polymer poly[2-methoxy-5-(2-ethylhexyl-oxy)-p-phenylenevinylene] (MEH-PPV) were fabricated and studied in-vitro for their potential in PDT application. Although not fully selective, the nanoparticles exhibited a strong bias to the cancer cells. The formation of ROS was proven in-vitro by staining of the cells with CellROX Green Reagent, after which PDT results were quantified by MTT assays. Cell mortality was observed to scale with nanoparticle dosage and light dosage. Based on these promising results the MEH-PPV nanoparticles were developed further to allow for surface functionalization, with the aim of targeting these NPs to cancer cell lines. For this work targeting of cancers that overexpress folate receptors (FR) were considered. The functionalized nanoparticles (FNPs) were studied in OVCAR3 (ovarian cancer cell line) as FR+, MIA PaCa2 (pancreatic cell line) as FR-, and A549 (lung cancer cell line) having marginal FR expression. Complete selectivity of the FNPs towards the FR+ cell line was found. Quantification of PDT results by MTS assays and flow cytometry show that PDT treatment was fully selective to the FR+ cell line (OVCAR3). No cell mortality was observed for the other cell lines studied here within experimental error. Finally, the issue of confirming and quantifying small molecule drug delivery to diseased tissue was tackled by developing quantum dot (Qdot) biosensors with the aim of achieving fluorescence reporting of intracellular small molecule/drug delivery. For fluorescence reporting prior expertise in control of the fluorescence state of Qdots was employed, where redox active ligands can place the Qdot in a quenched OFF state. Ligand attachment was accomplished by disulfide linker chemistry. This chemistry is reversible in the presence of sulfur reducing biomolecules, resulting in Qdots in a brightly fluorescent ON state. Glutathione (GSH) is such a biomolecule that is present in the intracellular environment. Experimental in-vitro data shows that this design was successfully implemented.
3

Discovering, Understanding, and Targeting Lipid Metabolism and Cytoskeleton Structural Changes in Stress-Adaptive Cancer Cells

Gil A Gonzalez (19176721) 19 July 2024 (has links)
<p dir="ltr">Cancer biological mechanisms are a vastly researched area in the field, yet they are not well understood in the various contexts in which cancer is found. Cancerous tumors often exist in harsh, stressful environments for normal cells, but cancer cells can thrive in these conditions. The tumor microenvironment (TME) typically has low oxygen levels (hypoxia), high acidity, and low nutrition. Exposure to the TME leads to many metabolic changes in the cells, enabling cancer to continue proliferating and migrating. However, these metabolic changes are not well understood, especially at the single-cell level. The ability to monitor cells in real time to determine the physical characteristics they undergo is critical to understanding the impact of these metabolic changes. Conventional methods focus on determining the genomic and proteomic changes in large numbers of cells, which may be overlooked if the changes are homogeneous across samples. In this work, we demonstrate the power of using multiple imaging techniques in combination with biochemical methods to visualize metabolic changes and determine the causes in various cancer cells under extreme hypoxia conditions.</p><p dir="ltr">The changes in the microtubule network that occur under hypoxia at the single-cell level are not widely researched. The use of confocal fluorescence microscopy can determine microtubule polymerization in conjunction with eGFP-transfected EB3, a protein that assists in microtubule polymerization. We have determined that hypoxic HeLa cells produce finger-like protrusions when exposed to hypoxia that help with cell migration and, ultimately, cancer cell metastasis. The formation of these protrusions is facilitated by localized mitochondria activities in the protrusions.</p><p dir="ltr">The metabolic changes in lipid droplets (LDs) under hypoxia at the single-cell level remain an elusive topic. The use of stimulated Raman spectroscopy (SRS) and coherent anti-Stokes Raman scattering (CARS) can determine the quantity and spatial-temporal distribution of LDs in cancer cells. We have found that LDs redistribute to the endoplasmic reticulum (ER) and increase in intensity in hypoxic MIA PaCa-2 and A549 cells. Time-lapse CARS microscopy revealed a release-accumulate process of these LDs on ER in hypoxia. We also studied the impact of carbon sources on LD formation and found that MIA PaCa2 cells prefer direct lipid uptake while glucose is also essential to reduce lipotoxicity. The use of hyperspectral stimulated Raman scattering (hSRS) also reveals that the content of the LDs changes to include less cholesteryl ester and a decrease in lipid saturation level.</p><p dir="ltr">Collectively, these findings shed new light on the understanding of cytoskeleton dynamics and lipid metabolism in hypoxic conditions. The discoveries made within this research would lead to better treatment strategies for effective treatment of hypoxia-resistant cancer cells.</p>

Page generated in 0.0179 seconds