61 |
Desenvolvimento de uma plataforma de baixo custo com aplicação na agricultura para determinação semi-quantitativa de micro- e macronutrientes no solo / Development of a low-cost platform with application in agriculture for the semi-quantitative determination of micro- and macronutrients in soilCleyton Nascimento Makara 05 March 2018 (has links)
Esta dissertação teve como objetivo o desenvolvimento de um dispositivo microfluídico para a determinação de nutrientes em solo. A motivação para o desenvolvimento de uma plataforma microfluídica dedicada à agricultura vem do crescimento populacional, que chegará em 2030 a 8,5 bilhões de pessoas, ante 7,3 bilhões atuais. Com um crescimento tão expressivo da população mundial o fornecimento de alimentos torna-se vital. A agricultura desempenha um papel notável no fornecimento de alimentos e na economia brasileira. O monitoramento de nutrientes no solo para uma boa produção é indispensável. O desenvolvimento de dispositivos microfluídicos vêm tomando destaque na área industrial, alimentar, ambiental e criminal, devido a sua portabilidade, baixo peso, custo de fabricação e consumo de reagentes. Com uma aplicação de amostra de 50 µL no centro do dispositivo microfluídico, o líquido percola o interior do dispositivo por capilaridade até as zonas reacionais, onde estão depositados pequenos volumes de reagente. Após a amostra reagir na zona reacional, uma alteração visual da cor é observada e esta pode ser utilizada para quantificar a espécie de interesse. Dentre os extratores utilizados, a água não é um bom extrator para os analitos aqui trabalhados. A curva analítica de borato e cobalto apresentaram resultados promissores tanto em solução aquosa quanto em ácido cítrico 2%. O emprego de solução de ácido cítrico 2% para construção da curva analítica e extração de ferro e cobre do solo é um reagente eficiente se comparado a água e citrato neutro de amônio. Para o fosfato, o emprego de soluções de água ou citrato neutro de amônio podem ser empregados. A construção de testes para quantificação de nitrito, nitrato e zinco apresentaram problemas de reprodutibilidade. As reações colorimétricas apresentaram resultados promissores para aplicação em dispositivos microfluídicos a base papel. A associação entre reações colorimétricas simples e dispositivos microfluídicos possibilitou o desenvolvimento de testes químicos para serem empregados na agricultura. Os dados gerados podem ser utilizados na modelação da distribuição de nutrientes no terreno em estudo e posterior correção visando benefícios à agricultura. / This dissertation aimed at the development of a microfluidic device for the determination of nutrients in soil. The motivation for the development of a microfluidic platform dedicated to agriculture comes from population growth, which in 2030 will reach 8.5 billion people, compared to 7.3 billion today. With such a significant growth of the world population, food supply becomes vital. Agriculture plays a notable role in food supply and in the Brazilian economy. The monitoring of nutrients in the soil for good production is indispensable. The development of microfluidic devices has been highlighted in the industrial, food, environmental and criminal areas, due to their portability, low weight, manufacturing cost and reagent consumption. With a 50 ?L sample application in the center of the microfluidic device, the liquid percolates the interior of the device by capillarity to the reaction zones where small volumes of reagent are deposited. After the sample reacts in the reaction zone, a visual color change is observed and this can be used to quantify the species of interest. Among the extractors used, water is not a good extractor for the analytes used here. The analytical curve of borate and cobalt presented promising results in both aqueous solution and 2% citric acid. The use of 2% citric acid solution for the construction of the analytical curve and extraction of iron and copper from the soil is an efficient reagent when compared to water and neutral ammonium citrate. For phosphate, the use of water solutions or neutral ammonium citrate may be employed. The construction of tests for quantification of nitrite, nitrate and zinc presented problems of reproducibility. The colorimetric reactions presented promising results for application in paper - based microfluidic devices. The association between simple colorimetric reactions and microfluidic devices allowed the development of chemical tests to be used in agriculture. The data generated can be used in the modeling of nutrient distribution in the field under study and later correction aiming at benefits to agriculture.
|
62 |
AQUEOUS MICRODROPLET GENERATION IN OIL-FREE ENVIRONMENTSUnknown Date (has links)
Droplet microfluidics generates and manipulates microdroplets in microfluidic devices at high manufacturing efficiency and controllability. Microdroplets have proven effective in biomedical applications such as single-cell analysis, DNA sequencing, protein partitioning and drug delivery. Conventionally, a series of aqueous microdroplets containing biosamples is generated and controlled in an oil environment. One of the critical challenges in this system is that recovery of the aqueous samples from the oil phase is very difficult and often requires expensive and cumbersome post-processing. Also, the low Reynolds (Re) number characteristic of this system results in low throughput of droplet generation. To circumvent challenges and fully utilize microdroplets for practical clinical applications, this research aims to unpack the fundamental physics that governs droplet generation in oil-free systems including an aqueous two-phase system (ATPS) and a high inertial liquid-gas system. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
|
63 |
Application of controlled thermal expansion in diffusion bonding for the high-volume microlamination of MECS devicesPluess, Christoph 10 September 2004 (has links)
Graduation date: 2005
|
64 |
Laminate mixing in microscale fractal-like merging channel networksEnfield, Kent E. 07 April 2003 (has links)
A two-dimensional model was developed to predict concentration profiles
from passive, laminar mixing of concentration layers formed in a fractal-like
merging channel network. Both flat and parabolic velocity profiles were used in
the model. A physical experiment was used to confirm the results of the model.
Concentration profiles were acquired in the channels using laser induced
fluorescence. The degree of mixing was defined and used to quantify the mixing in
the test section. Although the results of the experiment follow the trend predicted
by the two-dimensional model, the model under predicts the results of the
experiment. A three-dimensional CFD model of the flow field in the channel
network was used to explain the discrepancies between the two-dimensional model
and the experiment.
For the channel network considered, the degree of mixing is a function of
Peclet number. The effect of geometry on the degree of mixing is investigated
using the two-dimensional model by varying the flow length, the width of the inlet
channels, and the number of branching levels. A non-dimensional parameter is
defined and used to predict an optimum number of branching levels to maximize
mixing for a fixed inlet channel width, total length, and channel depth. / Graduation date: 2003
|
65 |
Performance-Driven Microfabrication-Oriented Methodology for MEMS Conceptual Design with Application in Microfluidic Device DesignDeng, Y.-M., Lu, Wen Feng 01 1900 (has links)
Performance and manufacturability are two important issues that must be taken into account during MEMS design. Existing MEMS design models or systems follow a process-driven design paradigm, that is, design starts from the specification of process sequence or the customization of foundry-ready process template. There has been essentially no methodology or model that supports generic, high-level design synthesis for MEMS conceptual design. As a result, there lacks a basis for specifying the initial process sequences. To address this problem, this paper proposes a performance-driven, microfabrication-oriented methodology for MEMS conceptual design. A unified behaviour representation method is proposed which incorporates information of both physical interactions and chemical/biological/other reactions. Based on this method, a behavioural process based design synthesis model is proposed, which exploits multidisciplinary phenomena for design solutions, including both the structural components and their configuration for the MEMS device, as well as the necessary substances for the chemical/biological/other reactions. The model supports both forward and backward synthetic search for suitable phenomena. To ensure manufacturability, a strategy of using microfabrication-oriented phenomena as design knowledge is proposed, where the phenomena are developed from existing MEMS devices that have associated MEMS-specific microfabrication processes or foundry-ready process templates. To test the applicability of the proposed methodology, the paper also studies microfluidic device design and uses a micro-pump design for the case study. / Singapore-MIT Alliance (SMA)
|
66 |
Microdisk fabrication by emulsion evaporationWong, Susanna Wing Man 17 September 2007 (has links)
Colloidal suspensions of disk-like particles have been of interest in both colloidal and liquid crystal studies because they exhibit unique liquid crystalline phases different from those of rod-like molecules. Disk-like particles, such as asphaltenes in heavy oil industry, clay particles in agriculture, and red blood cells in biology, are of great interest in a variety of industries and scientific areas. However, to fabricate monodisperse microdisks, uniform in structure or composition with precise control of particle size and shape has not yet succeeded. In this thesis, we show an experimental strategy of using microfluidic technique to fabricate homogeneous ñ-eicosene microemulsions with chloroform in an aqueous solution of sodium dedecyl sulfate (SDS). The monodisperse chloroform emulsions, generated by the glass-based microfluidic devices, ensure the precise control on microdisk particle size and shape. A systematic investigation was performed to study the relation between the resulted microdisk size and the initial concentration of ñ-eicosene in chloroform before evaporation. The smectic liquid crystalline phase inside the wax particles controls the coin-like disk shape below the melting temperature of waxâÂÂs rotator phase. The kinetics of the disk formation is observed using a polarized light microscope. Dynamic light scattering is used to characterize the Brownian motion of the microdisks, and the rotational diffusion is estimated from the image sequences taken by the charge-coupled device (CCD) camera. Effort has been put into collecting a large quantity of microdisks to investigate the discotic liquid crystalline phases, which can be readily probed by light scattering and microscope. In comparison, X-ray and neutron have to be used for the atomic liquid crystalline phase investigation.
|
67 |
Development of a High-throughput Electrokinetically-controlled Heterogeneous Immunoassay Microfluidic ChipGao, Yali 22 March 2010 (has links)
This thesis was on the development of a high-throughput electrokinetically-controlled heterogeneous immunoassay (EK-IA) microfluidic chip for clinical application. Through a series of experimental studies, a high-throughput EK-IA was developed. This EK-IA was capable of automatically screening multiple analytes from up to 10 samples in parallel, in only 26 min. Flow control in an integrated microfluidic network was realized by numerical simulation of the transport processes. This EK-IA was successfully applied to detect E. coli O157:H7 antibody and H. pylori antibody from human sera with satisfactory accuracy. Simultaneous screening of both antibodies from human sera was also achieved, demonstrating the potential of this EK-IA for efficiently detecting multiple pathogenic infections in clinical settings. Preliminary work on the application of EK-IA to detect biomarkers of embryo development in embryo culture media also yielded good results. In addition to the experimental studies, the reaction kinetics of this microfluidic EK-IA has also been investigated, using both numerical simulation and a modified Damköhler number. Targeted towards a more sensitive assay, the influences of several important parameters on the reaction kinetics were studied. This EK-IA holds great promise for automated and high-throughput immunoassay in clinical environments.
|
68 |
Development and Testing of a Microfluidic Device for Studying Resistance Artery FunctionVagaon, Andrei Iulian 12 January 2011 (has links)
Introduction: Hypertension is the number one risk factor for cardiovascular diseases. Total peripheral resistance (TPR) is strongly involved in blood pressure homeostasis. TPR is primarily determined by resistance arteries (RAs). Pathogenic factors which change RA structure are associated with cardiovascular disease. Despite this, methods employed in the study of RAs lack efficiency.
Methods: A polymer microfluidic device (Artery-on-a-Chip Device, AoC) made from polydimethylsiloxane (PDMS) was developed. RAs from CD1 mice were measured on the device. Their responses to phenylephrine (PE), acetylcholine (Ach), FURA-2 imaging, and 24-h culture were assessed.
Results: Following several modifications, vessel function on the AoC device was successfully measured. Robust PE constriction and Ach-induced vasodilation were observed. AoC arteries were viable after 24-hour culture, and FURA-2 was successfully imaged.
Conclusions: The AoC device is a viable alternative to cannulation myography. The AoC can greatly increase the efficiency of RA studies, while also decreasing training time and difficulty.
|
69 |
Trapping and Removal of Bubbles in a Microfluidic FormatLochovsky, Conrad 21 March 2012 (has links)
Unwanted gas bubbles are a challenge for microfluidic-based systems, as adherence to channel networks can disrupt fluid delivery. This is especially true for devices with biological applications, as the presence of a single bubble creates thin fluid films with extremely high shear stresses, which can damage biological samples. Current strategies to remove bubbles require complicated fabrication or off-chip components. This thesis describes an on-chip microfluidic strategy utilizing permeation for in-plane trapping and removal of occasional gas bubbles. The trap was demonstrated with nitrogen bubbles, which were consistently removed at a rate of 0.14 µL/min for a single trap, and shown to have long-term operation capability by removing approximately 4,000 bubbles during one day without failure. The trap was integrated with a microfluidic system for the study of small blood vessels. Experiments were complemented with analytical and numerical models to characterize the bubble removal process.
|
70 |
Development and Testing of a Microfluidic Device for Studying Resistance Artery FunctionVagaon, Andrei Iulian 12 January 2011 (has links)
Introduction: Hypertension is the number one risk factor for cardiovascular diseases. Total peripheral resistance (TPR) is strongly involved in blood pressure homeostasis. TPR is primarily determined by resistance arteries (RAs). Pathogenic factors which change RA structure are associated with cardiovascular disease. Despite this, methods employed in the study of RAs lack efficiency.
Methods: A polymer microfluidic device (Artery-on-a-Chip Device, AoC) made from polydimethylsiloxane (PDMS) was developed. RAs from CD1 mice were measured on the device. Their responses to phenylephrine (PE), acetylcholine (Ach), FURA-2 imaging, and 24-h culture were assessed.
Results: Following several modifications, vessel function on the AoC device was successfully measured. Robust PE constriction and Ach-induced vasodilation were observed. AoC arteries were viable after 24-hour culture, and FURA-2 was successfully imaged.
Conclusions: The AoC device is a viable alternative to cannulation myography. The AoC can greatly increase the efficiency of RA studies, while also decreasing training time and difficulty.
|
Page generated in 0.0316 seconds