• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Molecular Characterization of the Mitochondrial Calcium Uniporter

Plovanich, Molly 07 July 2014 (has links)
By buffering cytosolic calcium, mitochondria can shape the magnitude and duration of intracellular calcium transients, which in turn govern key physiological events. Although controlled uptake of calcium into the matrix influences the rate of ATP production, excess calcium within the matrix triggers non-specific permeabilization of the mitochondrial inner membrane, resulting in cell death. Despite its importance in cellular physiology, the molecular identity of the mitochondrial calcium uniporter remained a mystery for nearly five decades. Recently, an approach inspired by comparative genomics was used to identify two proteins required for high-capacity mitochondrial calcium uptake. These include MICU1, an EF-hand protein that may function as a regulatory component by sensing calcium, and MCU, the channel-forming subunit of the uniporter. In this work, I explore two distinct areas within the growing field of molecular mitochondrial calcium biology. First, I discuss the identification of a new protein, MICU1-paralog EFHA1, and present data that implicates it in mitochondrial calcium uptake. Subsequently, I describe efforts to establish an in vitro system to characterize the channel activity of MCU, including my contribution to the development of a liposome-based assay for calcium transport and preliminary work aimed at reconstituting MCU transport activity in proteoliposomes.

Page generated in 0.0197 seconds