• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Distributed transmission schemes for wireless communication networks

Alnatouh, Ousama S. January 2014 (has links)
In this thesis new techniques are presented to achieve performance enhancement in wireless cooperative networks. In particular, techniques to improve transmission rate and maximise end-to-end signal-to-noise ratio are described. An offset transmission scheme with full interference cancellation for a wireless cooperative network with frequency flat links and four relays is introduced. This method can asymptotically, as the size of the symbol block increases, achieve maximum transmission rate together with full cooperative diversity provided the destination node has multiple antennas. A novel full inter-relay interference cancellation method that also achieves asymptotically maximum rate and full cooperative diversity is then designed for which the destination node only requires a single antenna. Two- and four-relay selection schemes for wireless cooperative amplify and forward type networks are then studied in order to overcome the degradation of end-to-end bit error rate performance in single-relay selection networks when there are feedback errors in the relay to destination node links. Outage probability analysis for a four-relay selection scheme without interference is undertaken. Outage probability analysis of a full rate distributed transmission scheme with inter-relay interference is also studied for best single- and two-relay selection networks. The advantage of multi-relay selection when no interference occurs and when adjacent cell interference is present at the relay nodes is then shown theoretically. Simulation results for outage probability analysis are included which support the theoretical expressions. Finally, outage probability analysis of a cognitive amplify and forward type relay network with cooperation between certain secondary users, chosen by best single-, two- and four-relay selection is presented. The cognitive amplify and forward relays are assumed to exploit an underlay approach, which requires adherence to an interference constraint on the primary user. The relay selection scheme is performed either with a max-min strategy or one based on maximising exact end-to-end signal-to-noise ratio. The outage probability analyses are again confirmed by numerical evaluations.
2

Resource Allocation for MIMO Relay and Scalable H.264/AVC Video Transmission over Cooperative Communication Networks

Wu, Yi-Sian 10 September 2012 (has links)
This thesis proposes resource allocation algorithms for multi-input multi-output (MIMO) relay and Scalable H.264/AVC video transmission over cooperative communication networks. For MIMO relay, we explore the reception diversity with maximal ratio combining (MRC) and transmission diversity with space-time block codes (STBC) respectively. Then, a condition is proposed to maximize the overall output signal-to-noise ratio (SNR). In this condition, the ineffective relays will be excluded in sequence from the cooperation. Simulation results indicate that the effect of bit error rate (BER) through the relay selection is similar to the scheme which applies all relays, but the amounts of used relay decreased. For Scalable H.264/AVC video, by introducing frame significance analysis, the video quality dependency between coding frame and its references is investigated for temporal layers and quality layers. The proposed algorithm allocates the relay and sub-band to each layer based on channel conditions and the priority of classified video packets. Experimental results indicate that the proposed algorithm is superior to the temporal-based allocation and quality-based allocation cooperative schemes.
3

Performance Analysis of MIMO Relay Networks with Beamforming

January 2012 (has links)
abstract: This dissertation considers two different kinds of two-hop multiple-input multiple-output (MIMO) relay networks with beamforming (BF). First, "one-way" amplify-and-forward (AF) and decode-and-forward (DF) MIMO BF relay networks are considered, in which the relay amplifies or decodes the received signal from the source and forwards it to the destination, respectively, where all nodes beamform with multiple antennas to obtain gains in performance with reduced power consumption. A direct link from source to destination is included in performance analysis. Novel systematic upper-bounds and lower-bounds to average bit or symbol error rates (BERs or SERs) are proposed. Second, "two-way" AF MIMO BF relay networks are investigated, in which two sources exchange their data through a relay, to improve the spectral efficiency compared with one-way relay networks. Novel unified performance analysis is carried out for five different relaying schemes using two, three, and four time slots in sum-BER, the sum of two BERs at both sources, in two-way relay networks with and without direct links. For both kinds of relay networks, when any node is beamforming simultaneously to two nodes (i.e. from source to relay and destination in one-way relay networks, and from relay to both sources in two-way relay networks), the selection of the BF coefficients at a beamforming node becomes a challenging problem since it has to balance the needs of both receiving nodes. Although this "BF optimization" is performed for BER, SER, and sum-BER in this dissertation, the solution for optimal BF coefficients not only is difficult to implement, it also does not lend itself to performance analysis because the optimal BF coefficients cannot be expressed in closed-form. Therefore, the performance of optimal schemes through bounds, as well as suboptimal ones such as strong-path BF, which beamforms to the stronger path of two links based on their received signal-to-noise ratios (SNRs), is provided for BERs or SERs, for the first time. Since different channel state information (CSI) assumptions at the source, relay, and destination provide different error performance, various CSI assumptions are also considered. / Dissertation/Thesis / Ph.D. Electrical Engineering 2012
4

Towards Perpetual Energy Operation in Wireless Communication Systems

Benkhelifa, Fatma 11 1900 (has links)
Wireless is everywhere. Smartphones, tablets, laptops, implantable medical devices, and many other wireless devices are massively taking part of our everyday activities. On average, an actively digital consumer has three devices. However, most of these wireless devices are small equipped with batteries that are often limited and need to be replaced or recharged. This fact limits the operating lifetime of wireless devices and presents a major challenge in wireless communication. To improve the perpetual energy operation of wireless communication systems, energy harvesting (EH) from the radio frequency (RF) signals is one promising solution to make the wireless communication systems self-sustaining. Since RF signals are known to transmit information, it is interesting to study when RF signals are simultaneously used to transmit information and scavenge energy, namely simultaneous wireless information and power transfer (SWIPT). In this thesis, we specifically aim to study the SWIPT in multiple-input multiple-output (MIMO) relay communication systems and in cognitive radio (CR) networks. First, we study the SWIPT in MIMO relay systems where the relay harvests the energy from the source and uses partially/fully the harvested energy to forward the signal to the destination. For both the amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols, we consider the ideal scheme where both the energy and information transfer to the relay happen simultaneously, and the practical power splitting and time switching schemes. For each scheme, we aim to maximize the achievable end-to-end rate with a certain energy constraint at the relay. Furthermore, we consider the sum rate maximization problem for the multiuser MIMO DF relay broadcasting channels with multiple EH-enabled relays, and an enhanced low complex solution is proposed based on the block diagonalization method. Finally, we study the energy and data performance of the SWIPT in CR network where either the primary receiver (PR) or the secondary receiver (SR) is using the antenna switching (AS) technique. When the PR is an EH-enabled node, we illustrate the incentive of spectrum sharing in CR networks. When the SR is an EH-enabled node, we propose two thresholding-based selection schemes: the prioritizing data selection scheme and the prioritizing energy selection scheme.
5

Performance evaluation and enhancement for AF two-way relaying in the presence of channel estimation error

Wang, Chenyuan 30 April 2012 (has links)
Cooperative relaying is a promising diversity achieving technique to provide reliable transmission, high throughput and extensive coverage for wireless networks in a variety of applications. Two-way relaying is a spectrally efficient protocol, providing one solution to overcome the half-duplex loss in one-way relay channels. Moreover, incorporating the multiple-input-multiple-output (MIMO) technology can further improve the spectral efficiency and diversity gain. A lot of related work has been performed on the two-way relay network (TWRN), but most of them assume perfect channel state information (CSI). In a realistic scenario, however, the channel is estimated and the estimation error exists. So in this thesis, we explicitly take into account the CSI error, and investigate its impact on the performance of amplify-and-forward (AF) TWRN where either multiple distributed single-antenna relays or a single multiple-antenna relay station is exploited. For the distributed relay network, we consider imperfect self-interference cancellation at both sources that exchange information with the help of multiple relays, and maximal ratio combining (MRC) is then applied to improve the decision statistics under imperfect signal detection. The system performance degradation in terms of outage probability and average bit-error rate (BER) are analyzed, as well as their asymptotic trend. To further improve the spectral efficiency while maintain the spatial diversity, we utilize the maximum minimum (Max-Min) relay selection (RS), and examine the impact of imperfect CSI on this single RS scheme. To mitigate the negative effect of imperfect CSI, we resort to adaptive power allocation (PA) by minimizing either the outage probability or the average BER, which can be cast as a Geometric Programming (GP) problem. Numerical results verify the correctness of our analysis and show that the adaptive PA scheme outperforms the equal PA scheme under the aggregated effect of imperfect CSI. When employing a single MIMO relay, the problem of robust MIMO relay design has been dealt with by considering the fact that only imperfect CSI is available. We design the MIMO relay based upon the CSI estimates, where the estimation errors are included to attain the robust design under the worst-case philosophy. The optimization problem corresponding to the robust MIMO relay design is shown to be nonconvex. This motivates the pursuit of semidefinite relaxation (SDR) coupled with the randomization technique to obtain computationally efficient high-quality approximate solutions. Numerical simulations compare the proposed MIMO relay with the existing nonrobust method, and therefore validate its robustness against the channel uncertainty. / Graduate
6

Transceiver Design Based on the Minimum-Error-Probability Framework for Wireless Communication Systems

Dutta, Amit Kumar January 2015 (has links) (PDF)
Parameter estimation and signal detection are the two key components of a wireless communication system. They directly impact the bit-error-ratio (BER) performance of the system. Several criteria have been successfully applied for parameter estimation and signal detection. They include maximum likelihood (ML), maximum a-posteriori probability (MAP), least square (LS) and minimum mean square error (MMSE) etc. In the linear detection framework, linear MMSE (LMMSE) and LS are the most popular ones. Nevertheless, these criteria do not necessarily minimize the BER, which is one of the key aspect of any communication receiver design. Thus, minimization of BER is tantamount to an important design criterion for a wireless receiver, the minimum bit/symbol error ratio (MBER/MSER). We term this design criterion as the minimum-error-probability (MEP). In this thesis, parameter estimation and signal detection have been extensively studied based on the MEP framework for various unexplored scenar-ios of a wireless communication system. Thus, this thesis has two broad categories of explorations, first parameter estimation and then signal detection. Traditionally, the MEP criterion has been well studied in the context of the discrete signal detection in the last one decade, albeit we explore this framework for the continuous parameter es-timation. We first use this framework for channel estimation in a frequency flat fading single-input single-output (SISO) system and then extend this framework to the carrier frequency offset (CFO) estimation of multi-user MIMO OFDM system. We observe a reasonably good SNR improvement to the tune of 1 to 2.5 dB at a fixed BER (tentatively at 10−3). In this context, it is extended to the scenario of multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) or MIMO-OFDM with pa-rameter estimation error statistics obtained from LMMSE only and checked its effect at the equalizer design using MEP and LMMSE criteria. In the second exploration of the MEP criterion, it is explored for signal detection in the context of MIMO-relay and MIMO systems. Various low complexity solutions are proposed to alleviate the effect of high computational complexity for the MIMO-relay. We also consider various configurations of relay like cognitive, parallel and multi-hop relaying. We also propose a data trans-mission scheme with a rate of 1/Ns (Ns is the number of antennas at the transmitter) with the help of the MEP criterion to design various components. In all these cases, we obtain considerable BER improvement compared to the existing solutions.

Page generated in 0.0412 seconds