• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Iot-based Saline Volume Monitoring and Alert System

Dinesh, Kotti, Velpula, Narendra January 2023 (has links)
This project presents a comprehensive study on the design and implementationof an Internet of Things (IoT)-based system for monitoring and alerting salinevolumes in healthcare environments.Background: In healthcare settings, the accurate monitoring of saline volumesin Intravenous (IV) drip systems is crucial for ensuring patient safety and effectivetreatment. Traditional monitoring methods are labour-intensive and prone to human error. The IoT offers promising solutions for automating and enhancing themonitoring process.Objectives: This thesis aims to develop an IoT-based saline volume monitoring and alert system using NodeMCU, a load sensor, an amplifier, the ThingSpeakcloud platform, and the Massachusets Insitute of Technology (MIT) App Inventor.The system is designed to improve the accuracy and efficiency of saline volumemonitoring while reducing the burden on healthcare professionals.Methods: The proposal system employs a Node MicroController Unit (NodeMCU)microcontroller for data processing and communication, a load sensor for monitoring the saline volume, and a buzzer alarm and amplifier for alerting healthcareprofessionals when the saline volume reaches a critical threshold. The system connects to the ThingSpeak cloud platform for data storage and analysis, facilitatingremote monitoring and control through a custom mobile application developedusing MIT App Inventor.Results: The implementation and testing of the system showed accurate and reliable monitoring of saline volumes in real-time, with efficient alerting mechanisms.The user-friendly mobile application enabled healthcare professionals to monitormultiple IV drip systems simultaneously, receiving timely alerts when interventionwas required.Conclusions: The IoT-based saline volume monitoring and alert system demonstrates the potential to improve patient safety and healthcare efficiency. Furtherresearch and development can explore the integration of additional sensors, the refinement of the alert system, and the assessment of the system’s impact on clinicaloutcomes..
2

SmartCane+ : A Modular Device for Transforming Traditional Canes into Advanced Mobility Aids for the Elderly

Thummalapalli, Lakshmi Venkata Siva Rama Chakri, Narreddy, Nishwanth Reddy January 2024 (has links)
The "SmartCane+" thesis abstract outlines an initiative aimed at improving conventional walking canes into more intelligent, helpful devices for senior citizens. The incorporation of microcontrollers, which permits wireless communication and connection functions, is the primary innovation. With the use of MIT App Inventor, a unique mobile application and this technology, the cane can send its position to the user using Bluetooth. Because it can stop the cane from becoming lost, which is a regular problem for senior users, this function is especially beneficial. The SmartCane+ design places a strong focus on accessibility and cost. The idea maintains cheaper prices and simpler technology by choosing not to add complex hardware, which makes it easier for consumers to embrace and operate without feeling overwhelmed by complexity. By striking a mix between cutting-edge technology and intuitive operation, the design hopes to keep the cane a help rather than a burden. The results of the project indicate that the SmartCane+ effectively improves the safety and independence of senior users by ensuring the cane remains within a reachable distance and providing timely alerts. Testing showed reliable performance in various environments, although closed spaces introduced more variability. Future work will focus on enhancing the system’s accuracy, optimizing power consumption, and expanding compatibility with other mobile platforms.

Page generated in 0.0637 seconds