Spelling suggestions: "subject:"microfluidics"" "subject:"macrofluidics""
191 |
Automated Microfluidic Sample Preparation for Laser Scanning CytometryWu, Eric 06 April 2010 (has links)
Laser scanning cytometry (LSC) is a slide-based method that is used clinically for Quantitative Imaging Cytometry (QIC). A “Clatch” slide, named after the inventor, which is used in conjunction with the LSC for immunophenotyping patient cell samples, has several drawbacks. The slide requires time consuming and laborious pipette steps, making the slide prone to handling errors. The Clatch slide also uses a significant amount of cell sample, limiting the number of analyses for fine needle aspirate (FNA) samples.
This thesis details an automated microfluidic system, composed of an embedded circuit, a plastic and polymer microfluidic device, and an aluminum frame, which can perform the same immunophenotyping procedures. This new system reduces the labor from 36 pipette steps to 8, it reduces the amount of cell sample from 180 μL to 56 μL, and it shortens the entire procedure from 75 minutes to 42 minutes.
|
192 |
Novel Carbon-based Electrode Materials for Up-scaled Microfluidic Fuel CellsFuerth, Dillon 22 November 2012 (has links)
In this work, a MFC fabrication procedure including two non-conventional techniques (partial baking and cap-sealing) were employed for the development of an up-scaled microfluidic fuel cell (MFC). Novel carbon-based electrode materials were employed, including carbon foam, fibre, and cloth, the results from which were compared with traditionally-employed carbon paper. The utilization of carbon cloth led to 15% of the maximum power that resulted from carbon paper; however, carbon fibre led to a 24.6% higher power density than carbon paper (normalized by electrode volume). When normalized by projected electrode area, the utilization of carbon foams resulted in power densities up to 42.5% higher than that from carbon paper. The impact of catalyst loading on MFC performance was also investigated, with an increase from 10.9 to 48.3 mgPt cm-2 resulting in a 195% increase in power density.
|
193 |
Blood Filtration for Multiplexed Point-of-care Diagnostic DevicesPham, Ngoc Minh 29 November 2012 (has links)
In the developing world, there are large populations suffering from infectious diseases, many of whom are located in remote regions. With the rapid growth in microfluidic systems in recent years, complex functions of conventional diagnostic equipment have been miniaturized and integrated into small devices at the size of a credit card (so-called portable Point-of-care (POC) devices).
In this thesis a novel approach to overcoming the challenge of in-field biological sample processing and preparation to produce high quality fluids that can be readily used for downstream testings is described and proof of concept experiments presented. This approach uses hydrodynamic effects and combines nanoporous membrane with microfluidic systems and to filter the cellular component of blood. Experiments presented here demonstrate successful cells filtration from whole blood. Employing hydrodynamic effects is also shown to be an effective and potentially useful technique to isolate cells and plasma within appropriate micro-architectures.
|
194 |
Automated Microfluidic Sample Preparation for Laser Scanning CytometryWu, Eric 06 April 2010 (has links)
Laser scanning cytometry (LSC) is a slide-based method that is used clinically for Quantitative Imaging Cytometry (QIC). A “Clatch” slide, named after the inventor, which is used in conjunction with the LSC for immunophenotyping patient cell samples, has several drawbacks. The slide requires time consuming and laborious pipette steps, making the slide prone to handling errors. The Clatch slide also uses a significant amount of cell sample, limiting the number of analyses for fine needle aspirate (FNA) samples.
This thesis details an automated microfluidic system, composed of an embedded circuit, a plastic and polymer microfluidic device, and an aluminum frame, which can perform the same immunophenotyping procedures. This new system reduces the labor from 36 pipette steps to 8, it reduces the amount of cell sample from 180 μL to 56 μL, and it shortens the entire procedure from 75 minutes to 42 minutes.
|
195 |
Novel Carbon-based Electrode Materials for Up-scaled Microfluidic Fuel CellsFuerth, Dillon 22 November 2012 (has links)
In this work, a MFC fabrication procedure including two non-conventional techniques (partial baking and cap-sealing) were employed for the development of an up-scaled microfluidic fuel cell (MFC). Novel carbon-based electrode materials were employed, including carbon foam, fibre, and cloth, the results from which were compared with traditionally-employed carbon paper. The utilization of carbon cloth led to 15% of the maximum power that resulted from carbon paper; however, carbon fibre led to a 24.6% higher power density than carbon paper (normalized by electrode volume). When normalized by projected electrode area, the utilization of carbon foams resulted in power densities up to 42.5% higher than that from carbon paper. The impact of catalyst loading on MFC performance was also investigated, with an increase from 10.9 to 48.3 mgPt cm-2 resulting in a 195% increase in power density.
|
196 |
Blood Filtration for Multiplexed Point-of-care Diagnostic DevicesPham, Ngoc Minh 29 November 2012 (has links)
In the developing world, there are large populations suffering from infectious diseases, many of whom are located in remote regions. With the rapid growth in microfluidic systems in recent years, complex functions of conventional diagnostic equipment have been miniaturized and integrated into small devices at the size of a credit card (so-called portable Point-of-care (POC) devices).
In this thesis a novel approach to overcoming the challenge of in-field biological sample processing and preparation to produce high quality fluids that can be readily used for downstream testings is described and proof of concept experiments presented. This approach uses hydrodynamic effects and combines nanoporous membrane with microfluidic systems and to filter the cellular component of blood. Experiments presented here demonstrate successful cells filtration from whole blood. Employing hydrodynamic effects is also shown to be an effective and potentially useful technique to isolate cells and plasma within appropriate micro-architectures.
|
197 |
Novel Methods to Construct Microchannel Networks with Complex TopologiesHuang, Jen-Huang 14 March 2013 (has links)
Microfluidic technology is a useful tool to help answer unsolved problems in multidisciplinary fields, including molecular biology, clinical pathology and the pharmaceutical industry.Current microfluidic based devices with diverse structures have been constructed via extensively used soft lithography orphotolithography fabrication methods. A layer-by-layer stacking of 2D planar microchannel arrays can achieve limited degrees of three dimensionality. However, assembly of large-scale multi-tiered structures is tedious, and the inherently planar nature of the individual layers restricts the network’s topological complexity. In order to overcome the limitations of existing microfabrication methodswe demonstrate several novel methods that enable microvasculature networks: electrostatic discharge,global channel deformation and enzymatic sculpting to fabricate complex surface topologies.
These methods enable construction of networks of branched microchannels arranged in a tree-like architecture with diameters ranging from approximately 10 μm to 1 mm. Interconnected networks with multiple fluidic access points can be straightforwardly constructed, and quantification of their branching characteristics reveals remarkable similarity to naturally occurring vasculature. In addition, by harnessing enzymatic micromachining we are able to construct nanochannels, microchannels containing embedded features templated by the substrate’s crystalline morphology, and an irregular cross section of microchannel capable of performing isolation and enrichment of cells from whole blood with throughput 1 – 2 orders of magnitude faster than currently possible. These techniques can play a key role in developing an organ-sized engineered tissue scaffolds and high-throughput continuous flow separations.
|
198 |
Design, Fabrication and Characterization of Electrokinetically Pumped Microfluidic Chips for Cell Culture ApplicationsGlawdel, Tomasz January 2007 (has links)
Continuous perfusion cell culture chips offer the biomedical researcher unprecedented control over the microenvironment surrounding the cell which is not feasible with conventional static cell culture procedures. Applying microfluidics technology to these devices provides several benefits including increased fluid and media control, reduced consumption of reagents, continuous monitoring of cells and the potential for massively parallel experiments. In this work a new continuous perfusion cell culture chip is studied that utilizes electroosmotic pumping to control fluid flow. Problems associated with EOF and cells are solved by incorporating electroosmotic pumps (EO pumps) which generate an induced pressure driven flow in regions with cells. Several advantages of EO pumps include pulse free flow, quick flow control and precise movement of minute volumes of fluid. However, the high salt concentration in cell culture medium creates significant problems for EO pumps such as decreased flow rate due to low zeta potential, increased electrolysis due to large current draw, significant joule heating, bubble formation and polarization. Attempts to solve these problems with the proposed microfluidic chip are discussed.
The microfluidic chip is fabricated using soft lithography techniques developed as part of this work. The designs were modelled using a combination of numerical simulations with a commercial software program and compact circuit modelling. The pumps were integrated on-chip into a cell culture perfusion chip. The chip is adaptable due to the flexibility of the EO pumps to work as both pressure sources and virtual valves for regulating the fluid flow. Experiments with rainbow trout gill cells (RT-gill W1) were performed in order to validate the use of EO pumps for cell culture. Results show that the cells are not affected by the presence of the EO pumps as the electric field is isolated from the cells. However, the pumps were only able to operate continuously for eight hours before electrolysis effects stopped fluid flow. As a proof of concept, this shows that it is feasible to use EO pumps within a cell culture network.
|
199 |
Design, Fabrication and Characterization of Electrokinetically Pumped Microfluidic Chips for Cell Culture ApplicationsGlawdel, Tomasz January 2007 (has links)
Continuous perfusion cell culture chips offer the biomedical researcher unprecedented control over the microenvironment surrounding the cell which is not feasible with conventional static cell culture procedures. Applying microfluidics technology to these devices provides several benefits including increased fluid and media control, reduced consumption of reagents, continuous monitoring of cells and the potential for massively parallel experiments. In this work a new continuous perfusion cell culture chip is studied that utilizes electroosmotic pumping to control fluid flow. Problems associated with EOF and cells are solved by incorporating electroosmotic pumps (EO pumps) which generate an induced pressure driven flow in regions with cells. Several advantages of EO pumps include pulse free flow, quick flow control and precise movement of minute volumes of fluid. However, the high salt concentration in cell culture medium creates significant problems for EO pumps such as decreased flow rate due to low zeta potential, increased electrolysis due to large current draw, significant joule heating, bubble formation and polarization. Attempts to solve these problems with the proposed microfluidic chip are discussed.
The microfluidic chip is fabricated using soft lithography techniques developed as part of this work. The designs were modelled using a combination of numerical simulations with a commercial software program and compact circuit modelling. The pumps were integrated on-chip into a cell culture perfusion chip. The chip is adaptable due to the flexibility of the EO pumps to work as both pressure sources and virtual valves for regulating the fluid flow. Experiments with rainbow trout gill cells (RT-gill W1) were performed in order to validate the use of EO pumps for cell culture. Results show that the cells are not affected by the presence of the EO pumps as the electric field is isolated from the cells. However, the pumps were only able to operate continuously for eight hours before electrolysis effects stopped fluid flow. As a proof of concept, this shows that it is feasible to use EO pumps within a cell culture network.
|
200 |
Evaluation of Miniaturized Mixer and Integrated Optical Components for Cell SortingWang, Shuwen January 2008 (has links)
Conventional cell cytometers are often bulky and thus not convenient for bio-medical analysis where portable devices are desired. They also suffer from the drawback of high cost due to the complicated and expensive optical detection system involved. Therefore miniaturizing conventional cell cytometer is highly demanded as it offers an opportunity to transform the conventional bulky systems to more cost-efficient and portable microfluidic cell sorting devices. In addition to the advantages reduced cost and enhanced portability, microfluidic cell sorting devices require only a tiny amount of sample for analysis. In this thesis, one common microfluidic cell sorting device is developed using similar conventional functions and concepts but different sorting method. Unlike most of the conventional cell cytometers in which an electrical field or magnetic field is employed to deflect the charged target cells to the collecting container, microfluidic cell sorting devices use the fluid flow to control the movement of the targeted cells to the collecting reservoir. By using an electroosmitic pump, the response time of the flow switch is significantly lowered, leading to a much higher sorting efficiency. Despite the advantages of microfluidic cell sorting devices, there are some issues need to be addressed before realization of such devices. For example, more studies are required on the successful integration of the optical elements in the devices. In microfluidic, the transport phenomena is also different from that in macroscopic. Unlike that in macroscopic, surface forces are important in microfluidics. They result in pressure-induced flow which gives the parabolic profile of the velocity along the channel. Also, a plug-like velocity which is generated by the electoosmitic flow is required for the more controllable and accurate detection. To suppress the pressure-driven flow, hydro-resistance elements (Shallow channel network) are implemented on the microfluidic devices. Fabrication of optical elements by deposition of optical materials on glass or silicon wafer has been reported. However, this Micro Electro-Mechanical (MEM) technique requires special equipment and cleanroom facilities used in the semiconductor industry. A good alternative to the MEMS technique is soft lithography where optical elements can be created using polymers. In this work, ultraviolet-sensitive photo resists SU8 is used to fabricate the microfluidic cell sorting devices and the optical elements. By using the mask with the patterns of the microchannel network and optical elements, the optical elements can be fabricated with the microchannel, eliminating the problem of alignment. Experiments are also conducted to evaluate the integrated optical elements. To prevent cross-contamination, samples are usually prepared and are only mixed inside the microfluidic devices by the embedded mixers. Such embedded mixers, however, pose a great challenge as the small characteristic length of a microfluidic device tends to give a laminar flow and diffusion-dominated mixing. A simple passive micromixer is investigated to find the possibilities to integrate it to the microfluidic devices. To truly understand the diffusional mixing, a Y channel mixer is studied through the numerical and experimental investigations. Based on the results found, a possible design is also proposed and evaluated by experiments.
|
Page generated in 0.0562 seconds