Spelling suggestions: "subject:"microfluidics"" "subject:"macrofluidics""
341 |
Development of novel micro-embossing methods and microfluidic designs for biomedical applicationsLu, Chunmeng, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 178-197).
|
342 |
Droplet manipulationGilet, Tristan 17 June 2009 (has links)
In this thesis, we discuss some physical phenomena related to the manipulation of droplets, and their possible use as alternatives for digital
microfluidics. In a first part, the behavior of droplets in the vicinity of another liquid interface is explored. We have shown that droplets
can be kept bouncing onto a liquid interface, provided this latter is vertically vibrated. The bouncing mechanisms are investigated in several
configurations. Bouncing droplets may also experience self-propulsion and partial coalescence. The second part of this thesis is dedicated to
the study of droplets sliding down fibers. The basic microfluidic operations are advantageously implemented with simple fiber networks.
Dans cette thèse, nous discutons plusieurs phénomènes physiques liés à la manipulation des gouttes et à leur application possible en temps
qu'alternatives à la microfluidique digitale actuelle. La première partie est consacrée au comportement de gouttes au voisinage d'une autre
interface liquide. Nous avons prouvé qu'une goutte peut rebondir indéfiniment sur une interface liquide vibrée verticalement. Les mécanismes du
rebond sont analysés en détail pour plusieurs configurations. Sous certaines conditions, les gouttes rebondissantes peuvent également
s'auto-propulser ou coalescer partiellement. Dans une seconde partie, nous étudions le glissement des gouttes sur des fibres. Les opérations
microfluidiques de base sont avantageusement réalisées sur de simples réseaux de fibres.
|
343 |
Microfluidic devices for biotechnology and organic chemical applicationsAndersson, Helene January 2001 (has links)
Imagine if you could combine the power and capabilities ofan entire laboratory in the palm of your hand. Advances inmicrofluidic chip technology promise to integrate andminiaturize multiple lab processes into a single palm-sizeddevice. The advantages of these lab-on-a-chip devices,sometimes also referred to as micro total analysis systems(µTAS), compared with conventional bench-scale systems arenumerous and wide ranging and include: less reagentconsumption, low manufacturing costs, increased performance,faster analysis, high sample throughput, integration andautomation possibilities, and disposability. However,microfluidic devices also present challenges such as theinterfacing to the macro world and detection limits. In this thesis the focus has been to develop novel discretemicrofluidic components for biotechnology and organic chemicalapplications with the goal to integrate them to formlab-on-chips. A flow-through filter-chamber device has beendesigned, manufactured and evaluated for chemical analysis onbeads. Passive liquid handling has been integrated on the chipin the form of hydrophobic valves at the inlet channels. Anarray format has also been developed to allow parallel analysisof multiple samples. The filter-chamber functions well forsingle nucleotide analysis using pyrosequencing. Initialevaluations on catalyst screening in the filter-chamber devicehas been performed. The suitability of valve-less micropumps for biochemicalapplications is presented. Fluids encountered in variousbiochemical methods, including living cells, that areproblematic for other micropumps have been pumped with goodperformance. This thesis also introduces expandablemicrospheres as a novel component in microfluidics includingapplications such as one-shot valves, micropositioning andsurface enlargement. A novel technique for bead immobilization in microfluidicdevices based on surface chemistry is presented in this thesis.Beads for both biochemical assays and organic chemistry havebeen self-sorted and self-assembled in line patterns as narrowas 5 µm on both structured and unstructured substrates.This method will greatly facilitate the generation of screeningplatforms, for example. To develop a microfluidic device for catalysis-on-chip,ligands for asymmetric catalysis have successfully beenimmobilized in silicon channels by consecutive microcontactprinting, which is a novel technique presented in thisthesis. <b>Keywords:</b>microfluidics, beads, microspheres, silicon,filter-chamber, flow-through, bead trapping, DRIE, passivevalves, fluorocarbon, microfluidic array, adhesive bonding,valve-less micropump, microcontact printing, PDMS,self-assembly, self-sorting, DNA, SNP, pyrosequencing,allele-specific extension, expandable microspheres, catalysis,chiral ligand, monolayer, miniaturization, lab-on-a-chip,µTAS.
|
344 |
Digital Microfluidics for Integration of Lab-on-a-Chip DevicesAbdelgawad, Mohamed Omar Ahmad 23 September 2009 (has links)
Digital microfluidics is a new technology that permits manipulation of liquid droplets on an array of electrodes. Using this technology, nanoliter to microliter size droplets of different samples and reagents can be dispensed from reservoirs, moved, split, and merged together. Digital microfluidics is poised to become an important and useful tool for biomedical applications because of its capacity to precisely and automatically carry out sequential chemical reactions. In this thesis, a set of tools is presented to accelerate the integration of digital microfluidics into Lab-on-a-Chip platforms for a wide range of applications.
An important contribution in this thesis is the development of three rapid prototyping techniques, including the use of laser printing to pattern flexible printed circuit board (PCB) substrates, to make the technology accessible and less expensive. Using these techniques, both digital and channel microfluidic devices can be produced in less than 30 minutes at a minimal cost. These rapid prototyping techniques led to a new method for manipulating liquid droplets on non-planar surfaces. The method, called All Terrain Droplet Actuation (ATDA), was used for several applications, including DNA enrichment by liquid-liquid extraction. ATDA has great potential for the integration of different physico-chemical environments on Lab-on-a-Chip devices.
A second important contribution described herein is the development of a new microfluidic format, hybrid microfluidics, which combines digital and channel microfluidics on the same platform. The new hybrid device architecture was used to perform biological sample processing (e.g. enzymatic digestion and fluorescent labeling) followed by electrophoretic separation of the analytes. This new format will facilitate complete automation of Lab-on-a-Chip devices and will eliminate the need for extensive manual sample processing (e.g. pipetting) or expensive robotic stations.
Finally, numerical modeling of droplet actuation on single-plate digital microfluidic devices, using electrodynamics, was used to evaluate the droplet actuation forces. Modeling results were verified experimentally using an innovative technique that estimates actuation forces based on resistive forces against droplet motion. The results suggested a list of design tips to produce better devices. It is hoped that the work presented in this thesis will help introduce digital microfluidics to many of the existing Lab-on-a-Chip applications and inspire the development of new ones.
|
345 |
Droplet routing for digital microfluidic biochips based on microelectrode dot array architectureChen, Zhongkai 20 April 2011
<p>A digital microfluidic biochip (DMFB) is a device that digitizes fluidic samples into tiny droplets and operates chemical processes on a single chip. Movement control of droplets can be realized by using electrowetting-on-dielectric (EWOD) technology. DMFBs have high configurability, high sensitivity, low cost and reduced human error as well as a promising future in the applications of point-of-care medical diagnostic, and DNA sequencing. As the demands of scalability, configurability and portability increase, a new DMFB architecture called Microelectrode Dot Array (MEDA) has been introduced recently to allow configurable electrodes shape and more precise control of droplets.</p>
<p>The objective of this work is to investigate a routing algorithm which can not only handle the routing problem for traditional DMFBs, but also be able to route different sizes of droplets and incorporate diagonal movements for MEDA. The proposed droplet routing algorithm is based on 3D-A* search algorithm. The simulation results show that the proposed algorithm can reduce the maximum latest arrival time, average latest arrival time and total number of used cells. By enabling channel-based routing in MEDA, the equivalent total number of used cells can be significantly reduced. Compared to all existing algorithms, the proposed algorithm can achieve so far the least average latest arrival time.</p>
|
346 |
Peptide Modification of Sodium Alginate To Induce Selective Capture of Cardiac Cell PopulationsBrown, Melissa Andrea Natalie 30 July 2009 (has links)
Isolation of selected populations from heterogeneous cell mixtures and retrieval of the captured population of interest for regenerative medicine and diagnostics applications is one of the challenges that may be addressed by microfluidics. An affinity adhesion strategy was tested using the tetrapeptides RGDS (arg-gly-asp-ser), REDV (arg-glu-asp-val) and VAPG (val-ala-pro-gly) to modify an alginate hydrogel surface layer to selectively adhere fibroblast (FB), endothelial (EC) and smooth muscle cell (SMC) populations, respectively, of the non-myocyte cardiac cell fraction. Incorporation of peptides into sodium alginate gel surface coatings demonstrated a preferential, seeding density-dependent adhesion relationship on alginate-RGDS when tested with a cardiomyocyte-depleted cell suspension in both static culture and in microfluidic devices. Seeding density-dependent attachment was seen with close to 100% release of viable cells from coated surfaces upon application of ethylenediaminetetraacetic acid (EDTA). Further work will optimize the system with REDV and VAPG to capture ECs and SMCs.
|
347 |
A Microfluidic Platform for the Automated Multimodal Assessment of Small Artery Structure and FunctionYasotharan, Sanjesh 24 July 2012 (has links)
In this thesis, I present a microfluidic platform that enables automated image-based assessment of biological structure and function. My work focuses on assessing intact resistance arteries from the mouse cerebral vascular bed with a diameter of approximately 120µm in vitro. The experimental platform consists of a microfluidic device and a world-to-chip fluidic interconnect that minimizes unwanted dead volumes and eliminates the need for any liquid-filled peripheral equipment. The integrated platform is computer controlled and capable of fully automated operation once a small blood vessel segment is loaded onto the chip. Robust operation of the platform was demonstrated through a series of case studies that assessed small artery function and changes therein induced by incubation with the drug nifedipine, a dihydropyridine calcium channel blocker. In addition artery segments were stained for L-type calcium channels, F-actin and nuclei, from which structural information about cell alignment and shape was quantified.
|
348 |
A Microfluidic Platform for the Automated Multimodal Assessment of Small Artery Structure and FunctionYasotharan, Sanjesh 24 July 2012 (has links)
In this thesis, I present a microfluidic platform that enables automated image-based assessment of biological structure and function. My work focuses on assessing intact resistance arteries from the mouse cerebral vascular bed with a diameter of approximately 120µm in vitro. The experimental platform consists of a microfluidic device and a world-to-chip fluidic interconnect that minimizes unwanted dead volumes and eliminates the need for any liquid-filled peripheral equipment. The integrated platform is computer controlled and capable of fully automated operation once a small blood vessel segment is loaded onto the chip. Robust operation of the platform was demonstrated through a series of case studies that assessed small artery function and changes therein induced by incubation with the drug nifedipine, a dihydropyridine calcium channel blocker. In addition artery segments were stained for L-type calcium channels, F-actin and nuclei, from which structural information about cell alignment and shape was quantified.
|
349 |
Layer-by-Layer Assembled Smectite-Polymer Nanocomposite Film for Rapid Detection of Low-Concentration AflatoxinsHu, He 1987- 14 March 2013 (has links)
Aflatoxin is a potent biological toxin produced by fungi Aspergillus flavus and A. parasiticus. Current quantification methods for aflatoxins are mostly established on immunoaffinity columns which are both costly and labor intensive. Inspired by smectites’ high aflatoxin adsorption capacity and affinity, a novel aflatoxin quantification sensor based on smectite-polyacrylamide (PAM) nanocomposite was fabricated. First, a smectite-PAM nanocomposite film was synthesized on flat silicon substrates which assembled smectite particles from the clay suspension. A layer-by-layer assembly process was developed to achieve uniform morphology and thickness of the nanocomposite films. During the aflatoxin quantification process, positive correlations between the fluorescence intensity from the aflatoxin B1 (AFB1) adsorbed smectite-PAM nanocomposite films and the AFB1 concentration in the test solutions were obtained. The smectite-PAM nanocomposite film has shown similar AFB1 adsorption capabilities as the smectite.
Second, the smectite-PAM nanocomposite film was optimized in order to achieve the aflatoxin quantification at ppb level (below 20ppb) in corn extraction solutions. The smectite was modified by Ba2+, which had demonstrated to be able to improve its aflatoxin adsorption capacity. PAM aqueous solutions with the mass concentration ranging from 0.8% to 0.001% were tested. The results showed that the nanocomposite synthesized from 0.005% concentration of PAM solution generated the best properties. After the optimization, the smectite-PAM nanocomposite films achieved the detection of aflatoxin B1, B2, G1 and G2 (AFB2, AFG1 and AFG2) in 10 ppb corn extraction solution. Aflatoxin quantifications in AFB1 and AFB2 mixture solution, AFB1 and AFB2 mixture solution and AFB1 and AFG1 mixture solution were conducted, and the recoveries of last test ranged from 90.52% to 110.11% at low aflatoxin concentration (below 20 ppb).
Third, in order to shorten the quantification duration and simplify the detection process, a novel aflatoxin detection array based on smectite-PAM nanocomposite and an improved fluorometric quantification method were developed. Through a microfluidic chip, the reaction time was reduced to 10~20min. Two concentration levels (20~80ppb/5~15ppb) of aflatoxin B1 spiked corn extraction solutions were tested. In the fluorometric quantification step, a common lab-use 365 nm ultraviolet lamp replaced the spectrofluorometer which simplified and accelerated the process.
|
350 |
Measurement of Nitric Oxide Production from Lymphatic Entothelial Cells Under Mechanical StimuliJafarnejad, Mohammad 1987- 14 March 2013 (has links)
The lymphatic system plays an important role in fluid and protein balance within the interstitial spaces. Its dysfunction could result in a number of debilitating diseases, namely lymphedema. Lymphatic vessels utilize both intrinsic and extrinsic mechanisms to pump lymph. Intrinsic pumping involves the active contraction of vessels, a phenomenon that is regulated in part by nitric oxide (NO) produced by lymphatic endothelial cells (LECs). NO production by arterial endothelial cells has been shown to be sensitive to both shear stress and stretch. Therefore, because of the unique mechanical environment of the LECs, we hypothesize that mechanical forces play an important role in regulation of the lymphatic pumping. Parallel-plate flow chambers and indenter-based cyclic stretch devices were constructed and used to apply mechanical loads to LECs. In addition, high-throughput micro-scale channels were developed and tested for shear experiments to address the need to increase the productivity and high- resolution imaging. Twenty-four hours treatment of LECs with different shear stress conditions showed a shear-dependent elevation in NO production. Moreover, 2.5 folds increase in cumulative NO was observed for stretched cells compared to the unstretched cells over six hours period. In conclusion, the upregulation observed in NO production under mechanical stimuli suggest new regulatory mechanisms that can be pharmaceutically targeted. These results provide an unprecedented insight into lymphatic pumping mechanism.
|
Page generated in 0.0294 seconds