Spelling suggestions: "subject:"MMSE decoding""
1 |
A Filterbank Precoding Framework For MIMO Frequency Selective ChannelsVijaya, Krishna, A 08 1900 (has links)
Wireless systems with multiple antennas at both the transmitter and receiver (MIMO systems) have been the focus of research in the recent past due to their ability to provide higher data rates and better reliability than their single antenna counterparts. Designing a communication system for MIMO frequency selective channels provides many signal processing challenges. Popular methods like MIMOOFDM and space-time precoding linearly process blocks of data at both the transmitter and the receiver. Independence between the blocks is ensured by introducing sufficient redundancy between successive blocks. This approach has many pitfalls, including the limit on achievable data rate due to redundancy requirements and the need for additional coding/processing.
In this thesis, we provide a filterbank precoding framework (FBP) for communication over MIMO frequency selective channels. By viewing the channel as a polynomial matrix, we derive the minimum redundancy required for achieving FIR equalization of the precoded channel. It is shown that, for most practical channels, a nominal redundancy is enough. The results are general, and hold for channels of any dimension and order. We derive the zero-forcing and MMSE equalizers for the precoded channel. The role of equalizer delay in system performance is analyzed.
We extend the minimum redundancy result to the case of space-time filterbank precoding (STFP). Introducing the time dimension allows the channel to be represented by a block pseudocirculant matrix. By using the Smith form of block pseudocirculant matrices, we show that very high data rates can be achieved with STFP.
When channel information is available at the transmitter, we derive an iterative algorithm for obtaining the MMSE optimal precoder-equalizer pair. We then provide a comparison of FBP with the block processing methods. It is shown that FBP provides better BER performance than the block processing methods at a lower computational cost. The reasons for the better performance of FBP are discussed.
|
2 |
[en] PRECODING AND RESOURCE ALLOCATION FOR CELL-FREE MASSIVE MIMO SYSTEMS / [pt] PRÉ-CODIFICAÇÃO E ALOCAÇÃO DE RECURSOS EM SISTEMAS DE MÚLTIPLAS ANTENAS MASSIVOS LIVRES DE CÉLULAS03 December 2020 (has links)
[pt] Sistemas de múltiplas antenas livres de células surgiram recentemente
como uma combinação de MIMO massivo, sistemas de antenas distribuídas
(DAS) e network MIMO. Esta dissertação explora o downlink deste cenário
com pontos de acesso (PAs) de uma ou múltiplas antenas e considerando conhecimento perfeito e imperfeito do canal. São desenvolvidos esquemas que
combinam pré-codificação, alocação de potência e seleção de PAs (SPA).
Para começar, duas estratégias de SPA foram investigadas, uma baseada
em busca exaustiva (BE-SPA) e a outra em coeficientes de desvanecimento
de larga escala (LE-SPA), com o intuito de reduzir a complexidade das redes
livres de células. Subsequentemente, apresentamos duas técnicas iterativas
de pré-codificação, todas seguindo o critério Minimum Mean-Square Error
(MMSE), combinadas à restrição de potência total. A primeira nós chamamos
de MMSE, com restrição de potência total. Nós também incorporamos
robustez ao método desenvolvido chamado RMMSE, um pré-codificador
robusto com restrição de potência total. Como terceiro elemento da configuração
proposta, esquemas de alocação de potência foram desenvolvidos,
com abordagens ótimas, adaptativas e uniformes. Um algoritmo de alocação
de potência ótima (APO) é apresentado, baseado na maximização da
mínima Signal-to-Interference-plus-Noise Ratio (SINR). A solução adaptativa
(APA) é caracterizada pelo gradiente estocástico (GE) do mean-square
error (MSE) e a alternativa uniforme (UPA) propõe a equalização de todos
os coeficientes de potência. Todas as configurações devem respeitar a restrição
de potência por antena, imposta pelo sistema. Uma análise de soma
das taxas é feita, para todas as técnicas estudadas e o custo computacional
de cada uma delas é calculado. Resultados numéricos provam que as
técnicas propostas têm performance superior à pré-codificadores Conjugate
Beamforming (CB) e Zero-Forcing (ZF), ambos com alocação de potência
uniforme e ótima, na forma de taxa de erro de bit (BER), soma das taxas
e mínima SINR. Além disso, os resultados atestam que o desempenho pode
ser mantido e até melhorado com a aplicação de SPA. / [en] Cell-Free Massive multiple-input multiple-output (MIMO) systems
have emerged in recent years as a combination of massive MIMO, distributed
antenna systems (DAS) and network MIMO. This thesis explores the
downlink channel of such scenario with single and multiple-antenna access
points (APs) and takes into account both perfect and imperfect channel
state information (CSI). We propose transmit processing schemes that
combine precoding, power allocation and AP selection (APS). To begin
with, two APS strategies have been investigated, one based on exhaustive
search (ES-APS) and the other on the large-scale fading coefficients (LSAPS),
in order to reduce the complexity of cell-free networks. Subsequently,
we present two iterative precoding techniques following the minimum meansquare
error (MMSE) criterion with total power constraint. The first we
call MMSE, with total power constraint. We also incorporate robustness
in the developed method, called RMMSE, a robust precoder with total
power constraint. As the third element of the proposed schemes, power
allocation techniques are developed, with optimal, adaptive and uniform
approaches. An optimal power allocation (OPA) algorithm is presented
based on the maximization of the minimum signal-to-interference-plus-noise
ratio (SINR). The adaptive solution (APA) is characterized by the stochastic
gradient of the mean-square error (MSE) and the uniform alternative (UPA)
proposes to equalize all power coefficients. All configurations must fulfil an
antenna power constraint, imposed by the system. A sum-rate analysis is
carried out for all studied techniques and the computational cost of each
one is calculated. Numerical results prove that the proposed techniques
outperform existing conjugate beamforming (CB) and zero-forcing (ZF)
precoders, both with uniform and optimal power allocation, in terms of
bit error rate (BER), sum-rate and minimum SINR. Furthermore, we also
attest that performance can be maintained or even improved in the presence
of APS.
|
Page generated in 0.0623 seconds