• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Constraint satisfaction for interactive 3-D model acquisition

Cameron, Heather M. January 1990 (has links)
More and more computer applications are using three-dimensional models for a variety of uses (e.g. CAD, graphics, recognition). A major bottleneck is the acquisition of these models. The easiest method for designing the models is to build them directly from images of the object being modelled. This paper describes the design of a system, MOLASYS (for MOdeL Acquisition SYStem), that allows the user to build object models interactively from underlying images. This would not only be easier for the user, but also more accurate as the models will be built directly satisfying the dimensions, shape, and other constraints present in the images. The object models are constructed by constraining model points and edges to match points in the image objects. The constraints are defined by the user and expressed using a Jacobian matrix of partial derivatives of the errors with respect to a set of camera and model parameters. MOLASYS then uses Newton's method to solve for corrections to the parameters that will reduce the errors specified in the constraints to zero. Thus the user describes how the system will change, and the program determines the best way to accomplish the desired changes. The above techniques, implemented in MOLASYS, have resulted in an intuitive and flexible tool for the interactive creation of three-dimensional models. / Science, Faculty of / Computer Science, Department of / Graduate

Page generated in 0.0781 seconds