• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Growth and structure of DIP thin films and Au contacts on DIP thin films

Dürr, Arndt Christian. January 2002 (has links)
Stuttgart, Univ., Diss., 2002.
2

Croissance épitaxiale de GaAs sur substrats de Ge par épitaxie par faisceaux chimiques

Bélanger, Simon January 2010 (has links)
La situation énergétique et les enjeux environnementaux auxquels la société est confrontée entraînent un intérêt grandissant pour la production d'électricité à partir de l'énergie solaire. Parmi les technologies actuellement disponibles, la filière du photovoltaïque à concentrateur solaire (CPV pour concentrator photovoltaics) possède un rendement supérieur et un potentiel intéressant à condition que ses coûts de production soient compétitifs.La méthode d'épitaxie par faisceaux chimiques (CBE pour chemical beam epitaxy) possède plusieurs caractéristiques qui la rendent intéressante pour la production à grande échelle de cellules photovoltaïques à jonctions multiples à base de semi-conducteurs III-V. Ce type de cellule possède la meilleure efficacité atteinte à ce jour et est utilisé sur les satellites et les systèmes photovoltaïques à concentrateur solaire (CPV) les plus efficaces. Une des principales forces de la technique CBE se trouve dans son potentiel d'efficacité d'utilisation des matériaux source qui est supérieur à celui de la technique d'épitaxie qui est couramment utilisée pour la production à grande échelle de ces cellules. Ce mémoire de maîtrise présente les travaux effectués dans le but d'évaluer le potentiel de la technique CBE pour réaliser la croissance de couches de GaAs sur des substrats de Ge. Cette croissance constitue la première étape de fabrication de nombreux modèles de cellules solaires à haute performance décrites plus haut.La réalisation de ce projet a nécessité le développement d'un procédé de préparation de surface pour les substrats de germanium, la réalisation de nombreuses séances de croissance épitaxiale et la caractérisation des matériaux obtenus par microscopie optique, microscopie à force atomique (AFM), diffraction des rayons-X à haute résolution (HRXRD), microscopie électronique à transmission (TEM), photoluminescence à basse température (LTPL) et spectrométrie de masse des ions secondaires (SIMS). Les expériences ont permis de confirmer l'efficacité du procédé de préparation de surface et d'identifier les conditions de croissance optimales. Les résultats de caractérisation indiquent que les matériaux obtenus présentent une très faible rugosité de surface, une bonne qualité cristalline et un dopage résiduel relativement important. De plus, l'interface GaAs/Ge possède une faible densité de défauts. Finalement, la diffusion d'arsenic dans le substrat de germanium est comparable aux valeurs trouvées dans la littérature pour la croissance à basse température avec les autres procédés d'épitaxie courants. Ces résultats confirment que la technique d'épitaxie par faisceaux chimiques (CBE) permet de produire des couches de GaAs sur Ge de qualité adéquate pour la fabrication de cellules solaires à haute performance. L'apport à la communauté scientifique a été maximisé par le biais de la rédaction d'un article soumis à la revue Journal of Crystal Growth et la présentation des travaux à la conférence Photovoltaics Canada 2010.
3

Mise au point d'un réacteur épitaxial CBE

Pelletier, Hubert January 2011 (has links)
Ce projet de maîtrise consiste à l'asservissement et la mise en marche d'un réacteur d'épitaxie par jets chimiques au Laboratoire d'Épitaxie Avancée de l'Université de Sherbrooke. Le réacteur sert à la croissance dans l'ultravide de matériaux semi-conducteurs tels que l'arséniure de gallium (GaAs) et le phosphure d'indium-gallium (GalnP). La programmation LabVIEW™ et du matériel informatique de National Instruments sont utilisés pour asservir le réacteur. Le contrôle de la température de l'échantillon et de la pression de contrôle des réactifs de croissance dans le réacteur est assuré par des boucles de rétroaction. Ainsi, la température de l'échantillon est stabilisée à ±0,4 °C, alors que les pressions de contrôle de gaz peuvent être modulées sur un ordre de grandeur en 2 à 4 secondes, et stabilisées à ±0,002 Torr. Le système de pompage du réacteur a été amélioré suite à des mesures de vitesse de pompage d'une pompe cryogénique. Ces mesures révèlent une dégradation sur plus d'un ordre de grandeur de son pompage d'hydrogène avec l'opération à long terme. Le remplacement de la pompe cryogénique par une pompe turbo-moléculaire comme pompe principale a permis d'améliorer la fiabilité du système de pompage du système sous vide. D'autre part, la conductance du système d'acheminement de gaz et d'injection a été augmentée afin de réduire un effet mémoire des sources le système et faciliter la croissance de matériaux ternaires. Ainsi, des croissances de GaAs (100) sur substrat de même nature ont été effectuées et ont révélé un matériau de bonne qualité. Sa rugosité moyenne de 0,17 nm, mesurée par microscopie à force atomique, est très faible selon la littérature. De plus, une mobilité élevée des porteurs est obtenue à fort dopage au silicium, au tellure et au carbone, notamment une mobilité de 42 ± 9 cm2V_1s_1 des porteurs majoritaires "(trous) lors du dopage au carbone à 1,5 • 1019 cm-3, en accord avec la courbe théorique. La croissance du matériau ternaire GalnP a aussi été réalisée en accord de maille avec le substrat de GaAs, et avec une rugosité de 0,96 nm. Ceci constitue un premier pas dans la croissance d'alliages ternaires au laboratoire. Finalement, la mise eh marche du réacteur d'épitaxie par jets chimiques permet maintenant à cinq étudiants gradués de faire progresser des projets reliés directement à la croissance épitaxiale au Laboratoire d'Épitaxie Avancée de l'Université de Sherbrooke. [symboles non conformes]

Page generated in 0.0199 seconds