• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the link between bulge growth and quenching in massive galaxies through polychromatic bulge-disk decompositions in the CANDELS fields / Étudier le lien entre le grossissement du bulbe et le quenching dans les galaxies massives à travers une décomposition polychromatique entre le disque et le bulbe dans l'échantillon CANDELS

Dimauro, Paola 19 October 2017 (has links)
Les galaxies passives présentent des morphologies et propriétés structurelles différentes des galaxies de masse similaire formant des étoiles. La preuve d'une distribution bimodale dans propriétés des galaxies suggère un lien entre les processus de quenching et les structures des galaxies. Contraindre les mécanismes et la chronologie de la formation du bulbe s'avère fondamental pour comprendre l'origine de cette corrélation. Les bulbes grossissent-ils au cours de la séquence principale? Les galaxies ré-accrètent-elles un disque formant des étoiles? Les galaxies stoppent-elles leur formation d'étoile à partir des régions internes? etc. Répondre de manière pertinente à ces questions nécessite de résoudre les parties internes des galaxies à différentes époques. Grâce aux données de haute résolution en multi-longueur d'onde fournies par CANDELS, j'ai réalisé une décomposition séparant le bulbe du disque à partir des courbes de brillance de surface de 17'300 galaxies (F160W<23,0<z<2) dans 4 à 7 filtres couvrant un intervalle spectral compris entre 430 et 1600 nm. Une approche novatrice, basée sur un deep-learning, nous permet de sélectionner a priori les meilleurs profils et de réduire de fait la contamination. J'ai ajusté la SED (densité spectrale d'énergie) avec des modèles de population stellaires (BC03) de disque et de bulbe de manière indépendante afin d'obtenir les paramètres des populations stellaires (masses stellaires, couleurs). Cette procédure fournit un catalogue contenant à la fois les informations structurelles/morphologiques et les propriétés des populations stellaires d'un vaste échantillon de bulbes et de disques galactiques fournit à la communauté (lerma.obspm.fr/huertas/form_CANDELS). Il s'agit du catalogue le plus grand et le plus complet décomposant le bulbe du disque galactique à des redshifts z>0. J'ai utilisé le catalogue ainsi obtenu pour comprendre comment les galaxies stoppent leur formation d'étoile et déterminer l'impact que le quenching peut avoir sur les composantes internes. Les propriétés structurelles des bulbes et des disques, bien que différentes, dépendent peu de la morphologie globale de la galaxie hôte et de son activité de formation d'étoile. Si il existe un seul mécanisme de formation pour tous les types de galaxie ou plusieurs mécanismes contribuant à l'augmentation de la densité centrale, aucune trace dans la structure de la composante interne n'est gardée. De plus, les bulbes et les disques évoluant dans des galaxies soit éteintes, soit formant des étoiles (SF), bien qu'ils présentent des propriétés structurelles similaires, possèdent des distributions de couleurs différentes. Le processus de quenching ne semble pas avoir un impact significatif sur les propriétés des composantes internes.La seconde question clé est de savoir à quel moment les bulbes se forment. La distribution en morphologie le long du graphe SFR-masse montre un manque de galaxie calme (quiescent) avec B/T<0.3 alors que les galaxies avec B/T>0.3 sont présentes tout au long de la séquence principale. Cela suggère que la formation du bulbe doit commencer au cours de la séquence principale. De plus, nous n'avons aucune preuve d'un quelconque processus quenching sans qu'il y ait grossissement du bulbe. Nous n'excluons cependant pas la possibilité que les bulbes de la séquence principale correspondent à des galaxies ayant ré-accrété un disque formant des étoiles. La connaissance des âges est à ce niveau nécessaire pour réellement contraindre ce scénario. Une analyse élargie qui inclurait de l'imagerie à bande étroite (SHARDS) permettrait d'explorer les âges typiques des bulbes et des disques afin de placer des contraintes sur leur temps de formation. / Passive galaxies have different morphologies and structural properties than star-forming galaxies of similar mass. The evidence of a bimodal distribution of galaxy properties suggests a link between the quenching process and and galaxy structure. Understanding the origin of this correlation requires establishing constraints on the mechanisms as well as on the timing of bulge formation. How are bulges formed?Do bulges grow in the main sequence? Are galaxies re-accreting a star forming disk? Do galaxies start to quench from the inside? etc.Proper answers to these questions require resolving the internal components of galaxies at different epochs.Thanks to the CANDELS high-resolution multi-wavelength data, I performed 2-D bulge-disk decompositions of the surface brightness profile of $simeq 17'300$ galaxies (F160W < 23, 0 < z < 2) in 4-7 filters, covering a spectral distribution of 430-1600 nm. A novel approach, based on deep-learning, allowed us to make an a-priori selection of the best profile. Stellar parameters are computed trough the SED fitting. The final catalog contains structural/morphological informations together with the stellar population properties for a large sample of bulges and disks within galaxies. This is the largest and more complete catalog of bulge-disc decompositions at $z>0$.The catalog is then used to investigate how galaxies quench and transform their morphologies.The size of disks and massive bulge is independent of the bulge-to-total ratio ($M_{*}>10^{10} M_{odot}$). It suggests a unique formation process for massive bulges and also that disk survival/regrowth is a common phenomenon after bulge formation. However pure bulges (B/T>0.8), are ~30% larger than bulges embedded in disks at fixed stellar mass and have larger Sersic indices. This is compatible with a later growth of these systems through minor mergers.Bulges in star-forming galaxies are found to be 30% larger than bulges in quenched systems, at fixed stellar mass. Regarding the disks the systematic difference is only a factor of $sim 0.1$. This can be interpreted as a signature that galaxies experience an additional morphological transformation during or after quenching. However, this result is not free of progenitor bias.Moreover, the vast majority (if not all) of pure disks (B/T<0.2) in our sample lie in the main-sequence. It suggests that quenching without any bulge growth is not a common channel at least in the general field environment probed by our data. Pure "blue" bulges (B/T>0.8) do exist however, suggesting that the formation of bulges happens while galaxies are still star forming.Finally, in order to put constraints on the formation times of bulges and disks I analyzed the UVJ colors rest frame. Almost all galaxies in our sample present negative color gradients. Bulges are always redder than the disks at all redshifts. This is compatible with a scenario of inside-out quenching put forward by previous works. However rejuvenation through disk accretion could lead to similar signatures.
2

Structural properties of clumpy galaxies and spheroids at high redshift / Propriétés structurelles des galaxies irrégulières et des sphéroïdes dans l’univers lointain

Zanella, Anita 21 September 2016 (has links)
Cette thèse explore la question ouverte des mécanismes selon lesquels les galaxies lointaines évoluent au cours du temps. Elle se concentre sur l’étude des galaxies irrégulières et sur la cause de l’évolution en taille des galaxies passives et compactes. Bien que des régions de formation stellaire très lumineuses (clumps) soient observées dans les galaxies irrégulières depuis longtemps, leur nature et évolution sont encore débattues. Les instabilités gravitationnelles des disques ont été proposées comme la cause principale pour la formation in-situ des clumps, même si certains d’entre eux pourraient avoir une origine ex-situ. De plus, il n’est pas encore clair s’ils peuvent vivre longtemps ou si les vents stellaires les détruisent rapidement. À partir de l’étude détaillée d’un clump très jeune que nous avons découvert dans le disque d’une galaxie à redshift z~2 et de l’analyse d’un échantillon statistique, j’ai conclu que les clumps peuvent se former in-situ et qu’ils vivent typiquement 500 Myr. Ce résultat conforte les simulations numériques qui indiquent que les clumps ont un rôle important pour la croissance de leur noyau. Cela pourrait stabiliser le disque et y avoir un lien avec la formation des galaxies compactes et passives qui ont été decouvertes à haut redshift. Elles ont des tailles significativement plus petites, à masse égale, que celles de leurs homologues locales. Cette découverte a déclenché un débat concernant les possibles mécanismes qui peuvent augmenter leur taille sans altérer leur masse. J’ai analysé un échantillon de 32 galaxies et j’ai conclu que des multiples fusions mineures pourraient être les responsables principaux de leur evolution temporelle / This thesis explores the still unanswered question of how distant galaxies evolve through cosmic time: on one side it focuses on star-forming clumpy galaxies, on the other it investigates the size evolution of passive compact ones. Despite star forming clumps have been observed in high-redshift irregular galaxies since a while, their nature and fate are still highly debated. Violent gravitational disk instability in gas-rich, turbulent galaxies has been proposed as the main cause for in-situ clumps formation, although a fraction of them might have an ex-situ origin. Furthermore, clumps contribution to galaxy evolution is highly debated: it is not clear yet if they are long-lived or if stellar feedback rapidly disrupts them. From both the in-depth study of an extremely young clump that we discovered in the disk of a galaxy at redshift z ~ 2, and the analysis of a full statistical sample, I concluded that at least some clumps form in-situ due to violent disk instability and that they typically live ~ 500 Myr. This supports numerical simulations indicating that clumps are longlived and could play an important role in bulge growth. This might stabilize the disk, quench star formation and have therefore a link with the formation of the compact and passive galaxies that have been observed at high redshift. They have significant smaller sizes, at fixed stellar mass, than local counterparts. This discovery has ignited an important debate concerning the possible mechanisms that could inflate the galaxy sizes without altering much their mass. I analyzed a sample of 32 galaxies and I concluded that multiple minor mergers could be the main drivers of their observed time evolution
3

Apport de la haute resolution angulaire sur l'etude des galaxies lointaines : imagerie, optique adaptative et spectroscopie 3D

Francois, Assemat 16 December 2004 (has links) (PDF)
Cette thèse se place dans le contexte de l'étude des galaxies lointaines, études nécessaires à la compréhension des mécanismes de formation des galaxies. La mise en service du télescope spatial Hubble a permis d'obtenir des images à haute résolution spatiale de ces galaxies, donnant ainsi des premiers indices sur leur morphologie. En complément, l'installation de télescopes au sol de la classe des 8-10 mètres tels que le Very Large Telescope (VLT) européen a permis d'effectuer la spectroscopie de ces objets. Toutes ces données montrent que l'univers a connu un pic de formation stellaire il y a environ 8-10 milliards d'années, formation qui a chuté depuis. La première partie de ce manuscrit est consacrée à l'étude de la morphologie des galaxies lointaines, à l'aide d'images obtenues avec le télescope spatial Hubble. Le travail présenté porte en particulier sur deux populations de galaxies responsables du déclin de la formation stellaire évoqué plus haut : les galaxies compactes lumineuses (LCG) et les galaxies lumineuses dans l'infrarouge (LIRG). Ces études ont notamment permis d'établir une séquence pouvant servir de base à un scénario de formation d'une partie des galaxies de l'univers local. Des études complémentaires ont aussi montré le besoin d'une haute résolution spectrale pour déterminer avec précision le taux de formation stellaire des galaxies lointaines. La deuxième partie est consacrée à l'étude de FALCON, un projet de spectrographe de nouvelle génération pour le VLT alliant haute résolution spatiale et spectrale. L'objectif de FALCON est de fournir l'information dynamique sur les galaxies lointaines avec une résolution spatiale de 0.25 arcsec et un rapport signal-sur-bruit suffisant. Ceci nécessite d'utiliser l'Optique Adaptative pour compenser en temps-réel la dégradation des images due à la turbulence. Afin de s'affranchir de l'anisoplanétisme propre à cette technique, FALCON utilisera des techniques de tomographie consistant à corriger le front d'onde issu de la galaxie dont on souhaite déterminer la dynamique en combinant les mesures de front d'onde sur des étoiles hors-axe qui l'entourent. Le système d'Optique Adaptative a d'abord été intensivement étudié de manière théorique. Puis le développement d'un code de simulation numérique a alors permis d'établir des premières performances d'un tel système sur le ciel.
4

Impact des fusions majeures sur l'évolution des galaxies spirales et naines

Fouquet, Sylvain 24 June 2013 (has links) (PDF)
La découverte de l'expansion de l'univers par Edwin Hubble en 1929 et l'étude de modèles cosmologiques ont retiré à l'univers son image statique et infinie; l'univers évolue depuis plus de 13 milliards d'années, depuis le Big Bang. Le modèle cosmologique standard hiérarchique ΛCDM prédit que, durant cette évolution, les halos de matière noire auraient principalement accrété de la masse par fusions successives. L'évolution des baryons, qui se trouveraient être en quantité bien plus faible, aurait suivi celle de la matière noire. Deux types de fusions auraient structuré l'évolution des galaxies : les fusions mineures et majeures. De plus, une accrétion continue de gaz froid, similaire à de nombreuses fusions mineures, aurait aussi pu jouer un rôle dans l'assemblage de la masse des galaxies. Les fusions mineures et l'accrétion de gaz entraînent une évolution douce des galaxies. A contrario, les fusions majeures modifient brutalement la morphologie aussi bien que la cinématique des galaxies en fusion et forment ainsi de nouvelles galaxies. Une dernière forme d'évolution apparaît lorsque la galaxie est isolée ou pendant une période séparant deux épisodes de fusion : l'évolution séculaire. La morphologie et la cinématique d'une galaxie peuvent alors changer via des perturbations internes ou générées par la dernière fusion. L'évolution séculaire n'ajoute pas de masse à la galaxie; seule, elle est insuffisante pour créer une galaxie. Pour mieux contraindre l'évolution des galaxies, je me suis tout d'abord penché sur l'évolution des galaxies durant les huit derniers milliards d'années. Dans cette optique, j'ai travaillé sur des données observationnelles du programme IMAGES (Intermediate MAss Galaxies Evolution Sequence), une étude, basée sur 63 galaxies situées à des redshifts intermédiaires (z ∼ 0.6), ayant pour objectif de dresser un portrait de l'état des galaxies à redshifts intermédiaires et de comprendre les mécanismes à l'oeuvre dans leur évolution. J'ai principalement utilisé les méthodes de travail développées sur l'échantillon du projet IMAGES pour 12 nouvelles galaxies ayant un redshift moyen légèrement plus grand (z ∼ 0.7 au lieu de 0.6). Avec les données du HST provenant du relevé GOODS, j'ai classé morphologiquement les galaxies du nouvel échantillon. Puis, utilisant les données du spectrographe multi-objets GIRAFFE, j'ai déterminé la cinématique de ces galaxies. Je retrouve, pour une plus petite statistique, les résultats du projet IMAGES : la fraction importante de galaxies particulières qui représentent plus de 50% des galaxies de masses intermédiaires à des redshifts intermédiaires, au détriment des galaxies spirales ; une corrélation entre la classe morphologique des galaxies spirales et celle cinématique des galaxies en rotation; une tendance pour les galaxies particulières à avoir une cinématique complexe ou perturbée. Ces résultats impliquent que les galaxies ont changé de morphologie entre z = 0.7 et z = 0. Les galaxies ayant une cinématique complexe ou perturbée sur de grandes échelles (> 5 kpc) requièrent des mécanismes bouleversant l'ensemble du gaz. Le mécanisme d'évolution le plus apte à les expliquer est la fusion majeure plutôt que l'accrétion lente de gaz ou la fusion mineure de galaxies naines. Les galaxies elliptiques de l'univers proche étant déjà en place à z > 1, les galaxies particulières ont dû alors évoluer en galaxies spirales. Tester le scénario de reconstruction des galaxies spirales après une fusion majeure a été le second axe de mon travail de recherche. La fraction de gaz, plus élevée dans le passé (> 50 % à z ∼ 1 − 2), joue un rôle primordial dans ce processus de reconstruction. Une partie du gaz en se refroidissant après une fusion majeure tombe dans le potentiel de la galaxie tout en conservant son moment angulaire et peut ainsi reformer un disque. Hammer et al. (2005a) interprète la formation stellaire sur les huit derniers milliards d'années ainsi que l'évolution de la morphologie et des abondances des galaxies par des épisodes de fusions majeures suivis de formation de galaxies spirales par reconstruction d'un disque. Suivant ce scénario, de nombreuses galaxies spirales de l'univers proche résulteraient d'une fusion majeure. La galaxie M31 semble être une bonne candidate pour ce type de phénomène. Elle a un nombre d'amas globulaires et de galaxies naines près de deux fois supérieur à celui de la Voie Lactée, plusieurs courants stellaires dont le Giant Stream et surtout un bulbe classique. J'ai participé au travail de reconstruction de M31 après une fusion majeure via des simulations numériques afin de tester cette hypothèse. Une fusion majeure de rapport de masse ∼ 3, avec des fractions de gaz dépassant les 60 % et comprenant un premier passage il y a 8-9 milliards d'années et une fusion il y a 5-6 milliards d'années, reproduit les structures morphologiques et cinématiques principales de M31 (bulbe, disque épais, disque mince, Giant Stream), renforçant ainsi le scénario de reconstruction du disque après une fusion majeure. Mon dernier travail de recherche a porté sur les conséquences des fusions majeures sur leur environnement. En effet, les débris éjectés d'une fusion majeure peuvent atteindre des masses de plus de 15 % de la masse baryonique totale des galaxies en fusion. La majeure partie de la matière éjectée à grande distance pourrait être due à la formation de queues de marée durant la fusion. A l'intérieur de ces queues de marée, de nouvelles galaxies naines peuvent se former, des galaxies naines de marée. Une fusion majeure peut donc être la source de la formation de nouvelles galaxies. Si la majeure partie des galaxies spirales se sont formées par fusions majeures, les conséquences de ces dernières ne peuvent être négligées. Plus particulièrement, la fusion majeure qui serait à l'origine de M31 aurait pu essaimer des galaxies naines dans le Groupe Local. Il se trouve que les galaxies naines de la Voie Lactée ont deux particularités : une distribution spatiale en forme de plan épais, dénommée VPOS (Vast Polar Structure), et la présence de deux galaxies naines irrégulières, les Nuages de Magellan (MC pour Magellanic Cloud), très proches de la Voie Lactée (< 60 kpc). Mon travail a consisté à tester l'hypothèse qu'une queue de marée, éjectée par la fusion majeure de M31, ait pu former les galaxies naines compagnons de la Voie Lactée. Ce scénario est probant pour reproduire leur distribution spatiale et la distribution de leur moment angulaire. Cependant, il semble en contradiction avec les rapports M/L élevés dans les galaxies naines sphéroïdales déduits des mesures de dispersion de vitesse. Ces rapports s'expliqueraient par la présence de grandes quantités de matière noire alors que les galaxies naines de marée en sont dépourvues par essence. Cette apparente contradiction pourrait s'expliquer si l'hypothèse de la stabilité interne des galaxies naines est abandonnée. Plus généralement, cette étude relance la question de l'origine des galaxies naines. Sont-elles des reliques des galaxies primordiales de l'univers ou le résultat de fusions majeures? Si le phénomène de fusion majeure est confirmée comme le mécanisme principal de formation des galaxies spirales et si des études démontrent qu'un grand nombre de galaxies naines de marée sont créées lors de ces événements, la recherche sur la formation, le nombre et la distribution spatiale des galaxies naines sera alors à revoir.
5

Study of the Far Infrared Emission of Nearby Spiral Galaxies / Etude de l'émission dans l'infrarouge lointain des galaxies spirales proches

Drouhet, Willie 07 November 2013 (has links)
Durant ma thèse j'ai exploré les liens morphologiques et physiques entre les phases poussière et stellaire des galaxies spirales proches.J'ai travaillé sur 46 galaxies de l'échantillon KINGFISH à l'aide des données IRAC/MIPS/PACS/SPIRE (de 3.6 à 500 microns).Un biais usuel dans la mesure de l'orientation des galaxies spirales est dû à l'utilisation d'une seule isophote. Pour supprimer ce biais j'ai extrait de nombreuses isophotes des cartes galactiques, j'ai créé un critère pour quantifier la similitude des forme des isophotes. J'ai extrait des zones dans chaque carte où les formes des isophotes se ressemblent. Dans de nombreuses cartes les formes des isophotes sont cohérentes avec l'idée d'un disque sous-jacent et ce malgré des variations de formes des isophotes qui peuvent ponctuellement être notable. De là j'ai obtenu pour chaque galaxie une orientation du disque par carte. En comparant les formes obtenues pour chaque galaxie dans différentes cartes j'ai selectionné 20 galaxies sur 46 dans lesquelles l'accord en terme d'orientation du disque entre les différentes cartes était acceptable. Dans ces galaxies les zones associées au disque galactique ont une taille typique allant jusqu'à 1/3 du rayon galactique visible (R25) que ce soit pour la phase poussière aussi bien que pour la phase stellaire. Ces 20 galaxies sont moins lumineuses dans le visible, moins lumineuses dans l'IR, moins barrées, et de type plus tardifs que la moyenne. Pour ces 20 galaxies, les orientations obtenues par ma méthode sont plus proches des orientations obtenues à partir d'études cinématiques H-alpha que de celles obtenues par une autre étude photometrique utilisant une seule isophote (RC3).A partir des orientations obtenues par ma méthode et par l'étude cinématique H-alpha j'ai moyenné azimuthalement les brillances de surface pour obtenir des profiles radiaux de distribution spectrales d'énergie. Après avoir ajusté dessus un modèle d'émission de la poussière cosmique (Galliano 2011), j'ai trouvé que la densité surfacique d'énergie interceptée par la poussière était proportionnelle au produit de la masse totale de poussière sur la ligne de visée par le champ de radiation interstellaire moyen ressenti par la poussière sur la ligne de visée. Cette densité d'énergie interceptée par la poussière est mieux corrélé à la luminosité bolométrique stellaire totale que la densité surfacique en masse de poussière ou le champ de radiation ressenti par la poussière. Il est donc probable que les étoiles agées à tout le moins soit une importante source de chauffage pour la poussière cosmique. L'énergie interceptée par la poussière est aussi très bien corrélée avec l'énergie totale émise dans l'infrarouge. J'ai également trouvé que la poussière semble intercepter une plus large quantité d'énergie provenant des étoiles dans les galaxies plus actives à former des étoiles.Les profiles radiaux en masse de poussière sont moins bien décrits que les profils en masse stellaire par des profiles de Sersic. Par ailleurs pour les ajustements acceptables par des fonctions de Sersic, les distributions statistiques des indices de Sersic et des rayons de demi masse totale ont des largeurs statistiques plus grandes pour la poussière que pour les étoiles.J'ai également trouvé que le rapport densité surfacique maximum de poussière sur densité surfacique maximum d'étoile est un facteur important à considérer pour expliquer la variation avec le type morphologique du rapport densité surfacique d'énergie interceptée par la poussière sur densité surfacique d'énergie émise par les étoiles. Cette variation pourrait être liée à une variation entre les galaxies de la force de la structure spirale. / In my PHD work I explored the links between the physical properties of interstellar dust and other components of nearby spiral galaxies especially their stellar content. I worked on 46 disk galaxies from KINGFISH with IRAC/MIPS/PACS/SPIRE maps (3.6 - 500 microns). A bias is usually introduced in estimating disk orientations by using only a single surface brightness isophote. Thus I devised different surface brightness levels separated by constant steps in surface brightness and extracted isophotes at these levels in all FIR maps as well as in all IRAC 4.5 microns maps. To further assess the coherence of the shapes of isophotes across galactic disks, I built a quantitative indicator of the difference in shape between two ellipses with same center and same semi-major axis.I defined an acceptable level of difference between isophote shapes, by comparing disk orientations found in litterature. Using this level, I found regions inside the galactic disks where the isophotal shapes are similar. From these, I extracted one disk orientation per wavelength band. I found in the vast majority of the disk galaxy maps, be it dominated by stellar or dust emission, that a large fraction of the isophotes I extracted are coherent with the idea of an underlying disk. Comparing, for each galaxy, disk orientations extracted at all wavelengths, I found evidence in 20 galaxies out of 46, that on radial ranges as large as 1/3 of the visible disk (as measured by R25), the shapes of isophotes are morphologically similar. Thus for these 20 galaxies I devised consistent disk orientations both for the stellar and dust content. These 20 galaxies are less luminous, less emitting in the IR w.r.t. the optical, less barred, and characterized by later stage types than average. I also found that the disk orientations devised by my photometric method yield results more similar to H-alpha kinematic orientations than other photometric studies based on a single isophote level.Using the orientations I found and H-alpha dynamics disk orientations, I averaged azimuthally surface brightnesses to produce radial spectral energy distributions (SED) profiles. Once fitted with a cosmic dust emission model, they resulted in radial profiles of dust and stellar content properties. I found the dust intercepted power to be proportionnal to the product of the total dust mass and the average ISRF shining on dust. This former quantity is better correlated with the bolometric stellar luminosity than any of the dust mass or the dust heating ISRF separately. Thus the old stellar populations may be an important heating source for dust. The power intercepted by dust is also very well correlated with the total infrared power. The dust intercepts a larger quantity of power coming from stars in more actively star forming galaxies.Dust exhibit radial mass surface density profiles less well described by Sersic functions than stellar ones. When both profiles are well fitted by Sersic functions, stellar density profiles have smaller half mass radii than the isophotal optical radius (R25) separately in later type galaxies, but also in more quiescent galaxies. Sersic index and half mass radius distributions have larger widths for dust than for stellar surface density profiles.I also found that the ratio of dust over stellar surface density is an important factor to explain the variations with galactic morphological type of the ratio of dust intercepted power over the power emitted by old stellar populations. This later link could be intertwined with spiral structure strength in stage types later than 2.
6

Links between galaxy evolution, morphology and internal physical processes / Liens entre l'évolution des galaxies, morphologie et processus physiques internes

Kraljic, Katarina 23 October 2014 (has links)
Cette thèse a pour but de faire le lien entre l’évolution des galaxies, leur morphologie et les processus physiques internes, notamment la formation stellaire comme le résultat du milieu interstellaire turbulent et multiphase, en utilisant les simulations cosmologiques zoom-in, les simulations des galaxies isolées et en interaction, et le modèle analytique de la formation stellaire. Dans le chapitre 1, j’explique la motivation pour cette thèse et je passe brièvement en revue le contexte nécessaire lié à la formation des galaxies et la modélisation en utilisant les simulations numériques. Tout d’abord, j’explore l’évolution de la morphologie des galaxies du type de la Voie Lactée dans la série des simulations cosmologiques zoom-in à travers l’analyse des barres. J’analyse l’évolution de la fraction des barres avec le redshift, sa dépendance en fonction de la masse stellaire et l’histoire d’accrétion de galaxies individuelles. Je montre en particulier, que la fraction de barres décroit avec le redshift croissant, en accord avec les observations. Ce travail montre également que les résultats obtenus suggèrent que l’époque de la formation des barres correspond à la transition entre une phase précoce “violente” de la formation de galaxies spirales à z > 1, pendant laquelle elles sont souvent perturbées par les fusions avec les galaxies de masse comparable ou par multiple fusions avec les galaxies de petite masse, mais aussi les instabilités violentes de disque, et une phase "séculaire" tardive à z < 1, quand la morphologie finale est généralement stabilisée vers une structure dominée par le disque. Cette analyse est présentée dans le chapitre 2. Étant donné que ces simulations cosmologiques forment trop d'étoiles trop tôt par rapport aux populations de galaxies observées, je me concentre dans le chapitre 3 sur la formation stellaire dans un échantillon de simulation de galaxies en isolation, à bas redshift, et à résolution du parsec et sous-parsec. J'étudie l'origine physique de leurs relations de formation stellaire avec les cassures, et montre que le seuil de densité surfacique pour une formation stellaire efficace peut être lié à la densité caractéristique d'apparition de turbulence supersonique. Ce résultat s'applique aussi bien aux galaxies qui fusionnent, dans lesquelles l'augmentation de la turbulence compressive déclenchée par les marées compressives les conduit au régime de sursaut de formation d'étoiles. Un modèle analytique idéalisé de formation stellaire liant la densité surfacique de gaz au taux de formation stellaire comme une fonction de la présence de turbulence supersonique et la structure associée du milieu interstellaire est ensuite présenté dans le chapitre 4. Ce modèle prédit une cassure à basse densité de surface qui est suivie par un régime de loi de puissance à haute densité dans différents systèmes en accord avec les relations de formation stellaire des galaxies observées et simulées. La dernière partie de cette thèse est dédiée à la technique alternative de zoom-in cosmologique (Martig et al. 2009) et son implémentation dans le code à raffinement de maillage adaptatif RAMSES. Dans le chapitre 5, je présente les caractéristiques de base de cette technique aussi bien que certains de nos tout premiers résultats dans le contexte de l'accrétion cosmologique diffuse. / This thesis aims at making the link between galaxy evolution, morphology and internal physical processes, namely star formation as the outcome of the turbulent multiphase interstellar medium, using the cosmological zoom-in simulations, simulations of isolated and merging galaxies, and the analytic model of star formation. In Chapter 1, I explain the motivation for this thesis and briefly review the necessary background related to galaxy formation and modeling with the use of numerical simulations. I first explore the evolution of the morphology of Milky-Way-mass galaxies in a suite of zoom-in cosmological simulations through the analysis of bars. I analyze the evolution of the fraction of bars with redshift, its dependence on the stellar mass and accretion history of individual galaxies. I show in particular, that the fraction of bars declines with increasing redshift, in agreement with the observations. This work also shows that the obtained results suggest that the bar formation epoch corresponds to the transition between an early "violent" phase of spiral galaxies formation at z > 1, during which they are often disturbed by major mergers or multiple minor mergers as well as violent disk instabilities, and a late "secular" phase at z < 1, when the final morphology is generally stabilized to a disk-dominated structure. This analysis is presented in Chapter 2. Because such cosmological simulations form too many stars too early compared to observed galaxy populations, I shift the focus in Chapter 3 to star formation in a sample of low-redshift galaxy simulations in isolation at parsec and sub-parsec resolution. I study the physical origin of their star formation relations and breaks and show that the surface density threshold for efficient star formation can be related to the typical density for the onset of supersonic turbulence. This result holds in merging galaxies as well, where increased compressive turbulence triggered by compressive tides during the interaction drives the merger to the regime of starbursts. An idealized analytic model for star formation relating the surface density of gas and star formation rate as a function of the presence of supersonic turbulence and the associated structure of the ISM is then presented in Chapter 4. This model predicts a break at low surface densities that is followed by a power-law regime at high densities in different systems in agreement with star formation relations of observed and simulated galaxies. The last part of this thesis is dedicated to the alternative cosmological zoom-in technique Martig et al. 2009 and its implementation in the Adaptive Mesh Refinement code RAMSES. In Chapter 5, I will present the basic features of this technique as well as some of our very first results in the context of smooth cosmological accretion.

Page generated in 0.0478 seconds