1 |
MRI-Compatible Pneumatic Actuation Control Algorithm Evaluation and Test System DevelopmentWang, Yi 23 September 2010 (has links)
"This thesis presents the development of a magnetic resonance imaging (MRI) compatible pneumatic actuation test system regulated by piezoelectric valve for image guided robotic intervention. After comparing pneumatic, hydraulic and piezoelectric MRI-compatible actuation technologies, I present a piezoelectric valve regulated pneumatic actuation system consisted of PC, custom servo board driver, piezoelectric valves, sensors and pneumatic cylinder. This system was proposed to investigate the control schemes of a modular actuator, which provides fully MRI-compatible actuation; the initial goal is to control our MRI-compatible prostate biopsy robot, but the controller and system architecture are suited to a wide range of image guided surgical application. I present the mathematical modeling of the pressure regulating valve with time delay and the pneumatic cylinder. Three different sliding mode control (SMC) schemes are proposed to compare the system performance. Simulation results are presented to validate the control algorithm. Practical tests with parameters determined from simulation show that the system performance attained the goal. A novel MRI- compatible locking device for the pneumatic actuator was developed to provide safe lock function as the pneumatic actuator fully stopped."
|
2 |
Robotic System Development for Precision MRI-Guided Needle-Based InterventionsLi, Gang 11 August 2016 (has links)
"This dissertation describes the development of a methodology for implementing robotic systems for interventional procedures under intraoperative Magnetic Resonance Imaging (MRI) guidance. MRI is an ideal imaging modality for surgical guidance of diagnostic and therapeutic procedures, thanks to its ability to perform high resolution, real-time, and high soft tissue contrast imaging without ionizing radiation. However, the strong magnetic field and sensitivity to radio frequency signals, as well as tightly confined scanner bore render great challenges to developing robotic systems within MRI environment. Discussed are potential solutions to address engineering topics related to development of MRI-compatible electro-mechanical systems and modeling of steerable needle interventions. A robotic framework is developed based on a modular design approach, supporting varying MRI-guided interventional procedures, with stereotactic neurosurgery and prostate cancer therapy as two driving exemplary applications. A piezoelectrically actuated electro-mechanical system is designed to provide precise needle placement in the bore of the scanner under interactive MRI-guidance, while overcoming the challenges inherent to MRI-guided procedures. This work presents the development of the robotic system in the aspects of requirements definition, clinical work flow development, mechanism optimization, control system design and experimental evaluation. A steerable needle is beneficial for interventional procedures with its capability to produce curved path, avoiding anatomical obstacles or compensating for needle placement errors. Two kinds of steerable needles are discussed, i.e. asymmetric-tip needle and concentric-tube cannula. A novel Gaussian-based ContinUous Rotation and Variable-curvature (CURV) model is proposed to steer asymmetric-tip needle, which enables variable curvature of the needle trajectory with independent control of needle rotation and insertion. While concentric-tube cannula is suitable for clinical applications where a curved trajectory is needed without relying on tissue interaction force. This dissertation addresses fundamental challenges in developing and deploying MRI-compatible robotic systems, and enables the technologies for MRI-guided needle-based interventions. This study applied and evaluated these techniques to a system for prostate biopsy that is currently in clinical trials, developed a neurosurgery robot prototype for interstitial thermal therapy of brain cancer under MRI guidance, and demonstrated needle steering using both asymmetric tip and pre-bent concentric-tube cannula approaches on a testbed."
|
3 |
TELEOPERATED MRI‐GUIDED PROSTATE NEEDLE PLACEMENTSeifabadi, REZA 30 May 2013 (has links)
Most robotic systems reported for MRI-guided prostate interventions use manual needle insertion, based on a previously acquired image, which requires withdrawing the patient from the scanner multiple times during the procedure. This makes the intervention longer, more expensive and elongating the discomfort to patient and, most importantly, less accurate due to the virtually inevitable motion of the target. As a remedy, automated needle placement methods were proposed, putting human supervision out of the control loop. This thesis presents the development of enabling technologies for human-operated in-room master-slave needle placement under real-time MRI guidance, while the patient is kept in the scanner and having the process of needle placement under continuos control of the physician. The feasibility of teleoperated needle insertion was demonstrated by developing a 1-DOF (degree of freedom) MRI-compatible master-slave system, which was integrated with a 4-DOF robot for transperineal prostate biopsy and brachytherapy. An accuracy study was conducted on a robotic system for MRI-guided prostate needle placement. Different error sources were identified and quantified. This study concluded that errors occurring during needle insertion have the most significant contribution to needle placement error. In order to compensate for these errors, teleoperated needle steering under real-time MRI guidance was proposed. A 2-DOF piezo-actuated MRI-compatible needle steering module was developed and integrated with the aforementioned 4-DOF transperineal robot, yielding a fully actuated 6-DOF (x, y, z, yaw, pitch, roll) robotic platform for MRI-guided prostate interventions. A novel MRI-compatible master robot was also developed to enable teleoperated needle steering inside the MRI room. MRI-compatible controller hardware and software were developed. A novel MRI-compatible force/torque sensor was devised using Fiber Bragg Grating for force measurement in MRI room. Phantom experiments proved the feasibility
iii
of teleoperated needle steering under real-time MRI guidance. A system was also developed for real-time 3D shape tracking of a bevel-tip needle with Fiber Bragg Grating sensors embedded along the needle shaft. The needle profile was overlaid on the real-time MR image, yielding real time navigation with accuracy better than 0.5 mm. The experimental system is presently being refitted for clinical safety and feasibility trials on real patients. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2013-05-30 12:26:18.732
|
4 |
Teleoperation of MRI-Compatible Robots with Hybrid Actuation and Haptic FeedbackShang, Weijian 28 January 2015 (has links)
Image guided surgery (IGS), which has been developing fast recently, benefits significantly from the superior accuracy of robots and magnetic resonance imaging (MRI) which is a great soft tissue imaging modality. Teleoperation is especially desired in the MRI because of the highly constrained space inside the closed-bore MRI and the lack of haptic feedback with the fully autonomous robotic systems. It also very well maintains the human in the loop that significantly enhances safety. This dissertation describes the development of teleoperation approaches and implementation on an example system for MRI with details of different key components. The dissertation firstly describes the general teleoperation architecture with modular software and hardware components. The MRI-compatible robot controller, driving technology as well as the robot navigation and control software are introduced. As a crucial step to determine the robot location inside the MRI, two methods of registration and tracking are discussed. The first method utilizes the existing Z shaped fiducial frame design but with a newly developed multi-image registration method which has higher accuracy with a smaller fiducial frame. The second method is a new fiducial design with a cylindrical shaped frame which is especially suitable for registration and tracking for needles. Alongside, a single-image based algorithm is developed to not only reach higher accuracy but also run faster. In addition, performance enhanced fiducial frame is also studied by integrating self-resonant coils. A surgical master-slave teleoperation system for the application of percutaneous interventional procedures under continuous MRI guidance is presented. The slave robot is a piezoelectric-actuated needle insertion robot with fiber optic force sensor integrated. The master robot is a pneumatic-driven haptic device which not only controls the position of the slave robot, but also renders the force associated with needle placement interventions to the surgeon. Both of master and slave robots mechanical design, kinematics, force sensing and feedback technologies are discussed. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. MRI compatibility is evaluated extensively. Teleoperated needle steering is also demonstrated under live MR imaging. A control system of a clinical grade MRI-compatible parallel 4-DOF surgical manipulator for minimally invasive in-bore prostate percutaneous interventions through the patient’s perineum is discussed in the end. The proposed manipulator takes advantage of four sliders actuated by piezoelectric motors and incremental rotary encoders, which are compatible with the MRI environment. Two generations of optical limit switches are designed to provide better safety features for real clinical use. The performance of both generations of the limit switch is tested. MRI guided accuracy and MRI-compatibility of whole robotic system is also evaluated. Two clinical prostate biopsy cases have been conducted with this assistive robot.
|
5 |
Towards Hands-On Cooperative Control for Closed-Loop MRI-Guided Targeted Prostate BiopsyWartenberg, Marek 05 April 2018 (has links)
Intra-operative imaging is sometimes available to assist in needle biopsy, but typical open- loop insertion does not account for unmodeled needle deflection or target shift. Robotic closed-loop compensation for deviation from an initial straight-line trajectory can reduce the targeting error, using image-guidance for rotational control of an asymmetric bevel tip. By pairing closed-loop trajectory compensation with a hands-on cooperatively controlled needle insertion, a physician's control of the procedure can be maintained while incorporating benefits of robotic accuracy. Additionally, if puncture of a membrane can be detected, an enhanced haptic response can assist the physician in perceived anatomical localization of the needle tip. Functionality was implemented on a needle placement robot suitable for use in the MR environment and capable of holding a typical clinically used biopsy gun. The robot is configured for cooperatively controlled needle insertion with continuous closed-loop image- guided needle rotation. The robot and custom controller were tested for their effect on the Signal-to-Noise ratio (SNR) of MR images, and the results showed an approximate drop of only 12% in signal when the robot was present, and no additional signal drop when the robot was powered on or moving. The hardware and software subsystems were developed for clinical translation, and after each was validated in the lab they were integrated into the clinical environment to mimic the workflow of MRI-guided targeted biopsy. The full system was evaluated in-bore at Brigham and Women’s Hospital in Boston, MA where experiments for real-time puncture detection and MR image-guided targeted needle insertions under cooperative control were performed. Results showed overall targeting accuracy was 3.42mm RMS, improving accuracy by approximately 50% as compared to clinical trials of prostate biopsy using manual needle insertion. A cooperatively controlled robotic biopsy is more likely to gain acceptance by physicians over teleoperation due to maintaining proximity to the surgical site, but regulatory hurdles regarding robotic needle insertion still exist. The current robotic system framework is suitable for clinical use as it was fully validated in-bore, but some modifications could be made to increase the likelihood of regulatory approval. With these modifications the system could be ready for cadaver and pre- clinical animal trials within one year, and ready for in-human clinical trials in the next two to three years.
|
6 |
Precisão em posicionamento de manipulador não condutor acionado por músculos artificiais pneumáticos. / Positioning precision of a non conducting manipulator powered by pneumatic artificial muscles.Scaff, William 29 September 2015 (has links)
Com o crescimento populacional e a demanda energética crescente, a sociedade contemporânea têm enfrentado novos desafios para se manter. A aplicação da robótica em diversas áreas está cada vez mais comum, contribuindo para suprir estes novos desafios. Contudo, ainda existem casos em que o uso da robótica convencional é proibitivo, como em ambientes com campos elétricos e/ou magnéticos intensos, encontrado, por exemplo, nos sistemas de distribuição de energia elétrica e em máquinas de ressonância magnética. Isto porque os componentes condutores e ferromagnéticos utilizados podem oferecer perigos, causando queimaduras, curtos-circuitos e até lançamento de componentes. Em vista destas dificuldades, este trabalho propõe a construção de um manipulador robótico capaz de atuar nestas condições de campos elétricos e magnéticos elevados. Na construção de tal dispositivo, entretanto, é necessário o estudo da estrutura mecânica, dos atuadores, dos sensores e do controlador. No caso da estrutura mecânica e dos sensores, existem alternativas não condutoras disponíveis. O controlador geralmente é um microcomputador ou um dispositivo eletrônico, portanto condutor. Uma alternativa é manter o controlador distante e isolado do ambiente de risco. Mas para que esta hipótese seja testada, é necessário um atuador não condutor e não ferromagnético. Por isso, este trabalho propõe a construção de um atuador livre de materiais ferromagnéticos e condutores baseado no músculo artificial pneumático de McKibben. Músculos artificiais pneumáticos são disponíveis comercialmente, entretanto possuem materiais metálicos. Além disso, o controle preciso destes atuadores é dificultado pela sua alta não linearidade. Para verificar a viabilidade da aplicação de músculos artificiais em um manipulador não condutor, foram realizados testes com protótipos de músculos artificiais construídos com materiais compatíveis. O projeto e o dimensionamento do músculo artificial é abordado. Finalmente, é realizado o controle PID do músculo para avaliar sua controlabilidade e viabilidade de aplicação para tarefas de precisão em posicionamento. / With the population growth and the evergrowing energy dependency, the contemporary society have been facing new challenges to maintain yourself. The use of robotics in various fields is each time more common, contributing to surpass these new challenges. However, there are still cases where applying conventional robotics is prohibitive, such as in high electric and magnetic field environments, found, for example, in electric energy distribution systems and in magnetic resonance imaging machines. That\'s because conductive and ferromagnetic components can cause serious problems, like burns, short-cuts and even be throwed at high velocities. Knowing these difficulties, this work proposes the construction of a robotic manipulator capable of acting in these high electric and magnetic field environments. To build such manipulator, however, it\'s necessary to study the mechanic structure, the actuators, the sensors and the controller. In the case of the mechanic structure and sensors, there exists non-conductive and non-magnetic alternatives available. The controller is, in general, a microcomputer or an electric device, therefore, conductive. One alternative is to keep the controller far away from the risk environment. But to test this hypothesis, it\'s necessary to have a non-conductive and non-ferromagnetic actuator. Because of that, this work proposes the construction of an actuator free of conductive and magnetic materials, based on the McKibben pneumatic artificial muscle. Pneumatic artificial muscles are available commercially, but they have metallic components. Besides, the accurate control of these actuators is difficult for their high non-linearities. To verify the viability of applying artificial muscles on a non-conductive manipulator, tests were conducted with artificial muscle prototypes built with compatible materials. The design and dimensioning of the artificial muscle are covered. Finally, the PID controller is implemented to evaluate the muscle\'s controllability and its viability for tasks that need position accuracy.
|
7 |
Precisão em posicionamento de manipulador não condutor acionado por músculos artificiais pneumáticos. / Positioning precision of a non conducting manipulator powered by pneumatic artificial muscles.William Scaff 29 September 2015 (has links)
Com o crescimento populacional e a demanda energética crescente, a sociedade contemporânea têm enfrentado novos desafios para se manter. A aplicação da robótica em diversas áreas está cada vez mais comum, contribuindo para suprir estes novos desafios. Contudo, ainda existem casos em que o uso da robótica convencional é proibitivo, como em ambientes com campos elétricos e/ou magnéticos intensos, encontrado, por exemplo, nos sistemas de distribuição de energia elétrica e em máquinas de ressonância magnética. Isto porque os componentes condutores e ferromagnéticos utilizados podem oferecer perigos, causando queimaduras, curtos-circuitos e até lançamento de componentes. Em vista destas dificuldades, este trabalho propõe a construção de um manipulador robótico capaz de atuar nestas condições de campos elétricos e magnéticos elevados. Na construção de tal dispositivo, entretanto, é necessário o estudo da estrutura mecânica, dos atuadores, dos sensores e do controlador. No caso da estrutura mecânica e dos sensores, existem alternativas não condutoras disponíveis. O controlador geralmente é um microcomputador ou um dispositivo eletrônico, portanto condutor. Uma alternativa é manter o controlador distante e isolado do ambiente de risco. Mas para que esta hipótese seja testada, é necessário um atuador não condutor e não ferromagnético. Por isso, este trabalho propõe a construção de um atuador livre de materiais ferromagnéticos e condutores baseado no músculo artificial pneumático de McKibben. Músculos artificiais pneumáticos são disponíveis comercialmente, entretanto possuem materiais metálicos. Além disso, o controle preciso destes atuadores é dificultado pela sua alta não linearidade. Para verificar a viabilidade da aplicação de músculos artificiais em um manipulador não condutor, foram realizados testes com protótipos de músculos artificiais construídos com materiais compatíveis. O projeto e o dimensionamento do músculo artificial é abordado. Finalmente, é realizado o controle PID do músculo para avaliar sua controlabilidade e viabilidade de aplicação para tarefas de precisão em posicionamento. / With the population growth and the evergrowing energy dependency, the contemporary society have been facing new challenges to maintain yourself. The use of robotics in various fields is each time more common, contributing to surpass these new challenges. However, there are still cases where applying conventional robotics is prohibitive, such as in high electric and magnetic field environments, found, for example, in electric energy distribution systems and in magnetic resonance imaging machines. That\'s because conductive and ferromagnetic components can cause serious problems, like burns, short-cuts and even be throwed at high velocities. Knowing these difficulties, this work proposes the construction of a robotic manipulator capable of acting in these high electric and magnetic field environments. To build such manipulator, however, it\'s necessary to study the mechanic structure, the actuators, the sensors and the controller. In the case of the mechanic structure and sensors, there exists non-conductive and non-magnetic alternatives available. The controller is, in general, a microcomputer or an electric device, therefore, conductive. One alternative is to keep the controller far away from the risk environment. But to test this hypothesis, it\'s necessary to have a non-conductive and non-ferromagnetic actuator. Because of that, this work proposes the construction of an actuator free of conductive and magnetic materials, based on the McKibben pneumatic artificial muscle. Pneumatic artificial muscles are available commercially, but they have metallic components. Besides, the accurate control of these actuators is difficult for their high non-linearities. To verify the viability of applying artificial muscles on a non-conductive manipulator, tests were conducted with artificial muscle prototypes built with compatible materials. The design and dimensioning of the artificial muscle are covered. Finally, the PID controller is implemented to evaluate the muscle\'s controllability and its viability for tasks that need position accuracy.
|
8 |
Advancing Technologies for Interventional MRI Robotics with Clinical ApplicationsCarvalho, Paulo A. 25 March 2020 (has links)
An MRI’s superior soft tissue contrast and ability to perform parametric scanning make it a powerful tool for use during medical procedures; from surgery to rehabilitation. However, the MRI’s strong static magnetic field, fast switching gradients and constrained space make accomplishing procedures within it difficult. Recent advances in the field of robotics have enabled the creation of devices capable of assisting medical practitioners in this environment. In this work, technologies to enable the use and control of robotic assistive devices for MRI interventions are presented. This includes a modular controller that is designed, built and used to control two surgical systems with minimal effect on image quality. Progressive improvements to an MRI conditional actuator including the construction of a first of a kind plastic piezoelectric resonant motor stator that improves the motor’s compatibility with the MRI is presented. Finally, control algorithms are evaluated for real-time functional MRI based control of a rehabilitation robot which includes the use of a robot for controlling brain activity of a subject in an online experiment.
|
9 |
Advancing Technologies for Interventional MRI Robotics with Clinical ApplicationsCarvalho, Paulo A 26 November 2019 (has links)
An MRI’s superior soft tissue contrast and ability to perform parametric scanning make it a powerful tool for use during medical procedures; from surgery to rehabilitation. However, the MRI’s strong static magnetic field, fast switching gradients and constrained space make accomplishing procedures within it difficult. Recent advances in the field of robotics have enabled the creation of devices capable of assisting medical practitioners in this environment. In this work, technologies to enable the use and control of robotic assistive devices for MRI interventions are presented. This includes a modular controller that is designed, built and used to control two surgical systems with minimal effect on image quality. Progressive improvements to an MRI conditional actuator including the construction of a first of a kind plastic piezoelectric resonant motor stator that improves the motor’s compatibility with the MRI is presented. Finally, control algorithms are evaluated for real-time functional MRI based control of a rehabilitation robot which includes the use of a robot for controlling brain activity of a subject in an online experiment.
|
10 |
A force and displacement self-sensing method for a mri compatible tweezer end effectorMcPherson, Timothy Steven 05 July 2012 (has links)
This work describes a self-sensing technique for a piezoelectrically driven MRI-compatible tweezer style end effector, suitable for robot assisted, MRI guided surgery. Nested strain amplification mechanisms are used to amplify the displacement of the piezo actuators to practical levels for robotics. By using a hysteretic piezoelectric model and a two port network model for the compliant nested strain amplifiers, it is shown that force and displacement at the tweezer tip can be estimated if the input voltage and charge are measured. One piezo unit is used simultaneously as a sensor and an actuator, preserving the full actuation capability of the device. Experimental validation shows an average of 12% error between the self-sensed and true values.
|
Page generated in 0.0417 seconds