• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Noninvasive assessment and quantification of tumour vascularisation using MRI and CT in a tumour model with modifiable angiogenesis – An animal experimental prospective cohort study

Mirus, Matthew M., Tokalov, Sergey V., Wolf, Gerald, Heinold, Jerilyn, Prochnow, V., Abolmaali, Nasreddin 06 June 2018 (has links) (PDF)
Background To investigate vascular-related pathophysiological characteristics of two human lung cancers with modifiable vascularisation using MRI and CT. Methods Tumour xenografts with modifiable vascularisation were established in 71 rats (approval by the Animal Care Committee was obtained) by subcutaneous transplantation of two human non-small-cell lung cancer (NSCLC) cells (A549, H1299) either alone or co-transplanted with vascular growth promoters. The vascularity of the tumours was assessed noninvasively by MRI diffusion-weighted-imaging (DWI), T2-weighted, and time-of-flight (TOF) sequences) as well as contrast-enhanced CT (CE-CT), using clinical scanners. As a reference standard, histological examinations (CD-31, fluorescent beads) were done after explantation. Results Microvessel density (MVD) was higher in co-transplanted tumours (171 ± 19 number/mm2) than in non-co-transplanted tumours (111 ± 11 number/mm2; p = 0.002). Co-transplanted tumours showed higher growth rates and larger tumour vessels at TOF-MRI as well as larger necrotic areas at CE-CT. In co-transplanted tumours, DWI revealed higher cellularity (lower minimal ADCdiff 166 ± 15 versus 346 ± 27 mm2/s × 10−6; p < 0.001), highly necrotic areas (higher maximal ADCdiff 1695 ± 65 versus 1320 ± 59 mm2/s × 10−6; p < 0.001), and better-perfused tumour stroma (higher ADCperf 723 ± 36 versus 636 ± 51 mm2/s × 10−6; p = 0.005). Significant correlations were found using qualitative and quantitative parameters: maximal ADCperf and MVD (r = 0.326); maximal ADCdiff and relative necrotic volume on CE-CT (r = 0.551); minimal ADCdiff and MVD (r = −0.395). Conclusions Pathophysiological differences related to vascular supply in two human lung cancer cell lines with modifiable vascularity are quantifiable with clinical imaging techniques. Imaging parameters of vascularisation correlated with the results of histology. DWI was able to characterise both the extent of necrosis and the level of perfusion.
2

Noninvasive assessment and quantification of tumour vascularisation using MRI and CT in a tumour model with modifiable angiogenesis – An animal experimental prospective cohort study

Mirus, Matthew M., Tokalov, Sergey V., Wolf, Gerald, Heinold, Jerilyn, Prochnow, V., Abolmaali, Nasreddin 06 June 2018 (has links)
Background To investigate vascular-related pathophysiological characteristics of two human lung cancers with modifiable vascularisation using MRI and CT. Methods Tumour xenografts with modifiable vascularisation were established in 71 rats (approval by the Animal Care Committee was obtained) by subcutaneous transplantation of two human non-small-cell lung cancer (NSCLC) cells (A549, H1299) either alone or co-transplanted with vascular growth promoters. The vascularity of the tumours was assessed noninvasively by MRI diffusion-weighted-imaging (DWI), T2-weighted, and time-of-flight (TOF) sequences) as well as contrast-enhanced CT (CE-CT), using clinical scanners. As a reference standard, histological examinations (CD-31, fluorescent beads) were done after explantation. Results Microvessel density (MVD) was higher in co-transplanted tumours (171 ± 19 number/mm2) than in non-co-transplanted tumours (111 ± 11 number/mm2; p = 0.002). Co-transplanted tumours showed higher growth rates and larger tumour vessels at TOF-MRI as well as larger necrotic areas at CE-CT. In co-transplanted tumours, DWI revealed higher cellularity (lower minimal ADCdiff 166 ± 15 versus 346 ± 27 mm2/s × 10−6; p < 0.001), highly necrotic areas (higher maximal ADCdiff 1695 ± 65 versus 1320 ± 59 mm2/s × 10−6; p < 0.001), and better-perfused tumour stroma (higher ADCperf 723 ± 36 versus 636 ± 51 mm2/s × 10−6; p = 0.005). Significant correlations were found using qualitative and quantitative parameters: maximal ADCperf and MVD (r = 0.326); maximal ADCdiff and relative necrotic volume on CE-CT (r = 0.551); minimal ADCdiff and MVD (r = −0.395). Conclusions Pathophysiological differences related to vascular supply in two human lung cancer cell lines with modifiable vascularity are quantifiable with clinical imaging techniques. Imaging parameters of vascularisation correlated with the results of histology. DWI was able to characterise both the extent of necrosis and the level of perfusion.

Page generated in 0.084 seconds