Spelling suggestions: "subject:"MSC 58999, MSC 05999"" "subject:"MSC 58999, MSC 051999""
1 |
A Faber-Krahn-type Inequality for Regular TreesLeydold, Josef January 1996 (has links) (PDF)
In the last years some results for the Laplacian on manifolds have been shown to hold also for the graph Laplacian, e.g. Courant's nodal domain theorem or Cheeger's inequality. Friedman (Some geometric aspects of graphs and their eigenfunctions, Duke Math. J. 69 (3), pp. 487-525, 1993) described the idea of a ``graph with boundary". With this concept it is possible to formulate Dirichlet and Neumann eigenvalue problems. Friedman also conjectured another ``classical" result for manifolds, the Faber-Krahn theorem, for regular bounded trees with boundary. The Faber-Krahn theorem states that among all bounded domains $D \subset R^n$ with fixed volume, a ball has lowest first Dirichlet eigenvalue. In this paper we show such a result for regular trees by using a rearrangement technique. We give restrictive conditions for trees with boundary where the first Dirichlet eigenvalue is minimized for a given "volume". Amazingly Friedman's conjecture is false, i.e. in general these trees are not ``balls". But we will show that these are similar to ``balls". (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
|
2 |
The Geometry of Regular Trees with the Faber-Krahn PropertyLeydold, Josef January 1998 (has links) (PDF)
In this paper we prove a Faber-Krahn-type inequality for regular trees and give a complete characterization of extremal trees. It extends a former result of the author. The main tools are rearrangements and perturbation of regular trees. (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
|
Page generated in 0.041 seconds