• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5568
  • 2203
  • 1170
  • 545
  • 376
  • 294
  • 236
  • 152
  • 144
  • 103
  • 100
  • 88
  • 76
  • 74
  • 32
  • Tagged with
  • 13085
  • 1952
  • 1561
  • 1438
  • 1329
  • 1168
  • 1155
  • 1090
  • 923
  • 901
  • 886
  • 733
  • 711
  • 667
  • 646
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

IP multicast receiver mobility using multi-homing in a multi-beam satellite network

Jaff, Esua K., Pillai, Prashant, Hu, Yim Fun January 2013 (has links)
No / There are several merits of mobile communication devices having multiple network interfaces as compared to traditional devices with just one interface. Smart phones these days are a true example of a mobile multi-homed communication device with heterogeneous network interfaces. Several solutions are available for unicast applications to provide seamless handover using the multiple interfaces of a multi-homed device in terrestrial networks. However, very little has been done on similar support for IP multicast mobility support for mobile satellite terminals in a ubiquitous multi-beam satellite network. Most of the schemes proposed for handovers in multi-homed devices place a lot of emphasis on maintaining the multi-homed device identity especially when the second interface joins the communication session. This increases complexity in the whole system. The issue of maintaining the multi-homed device identity plus the additional signalling messages involve are neither necessary nor desired in an IP multicast communication handover in a multi-beam satellite scenario. This paper seeks to exploit the group communication features of IP multicast (i.e., the fact that anyone can join or leave a multicast group at any time and from any location) and the multiple interfaces of a mobile Return Channel Satellite Terminal (RCST) to support IP multicast communication during handover when a mobile multi-homed RCST changes its point of attachment to the network from one satellite gateway to another.
132

Multi-input, multi-output system identification from frequency response samples with applications to the modeling of large space structures

Medina B., Enrique Antonio January 1991 (has links)
No description available.
133

On Multi-Scale Refinement of Discrete Data

Dehghani Tafti, Pouya 10 1900 (has links)
<p> It is possible to interpret multi-resolution analysis from both Fourier-domain and temporal/spatial domain stand-points. While a Fourier-domain interpretation helps in designing a powerful machinery for multi-resolution refinement on regular point-sets and lattices, most of its techniques cannot be directly generalized to the case of irregular sampling. Therefore, in this thesis we provide a new definition and formulation of multi-resolution refinement, based on a temporal/spatial-domain understanding, that is general enough to allow multi-resolution approximation of different spaces of functions by processing samples (or observations) that can be irregularly distributed or even obtained using different sampling methods. We then continue to provide a construction for designing and implementing classes of refinement schemes in these general settings. The framework for multi-resolution refinement that we discuss includes and extends the existing mathematical machinery for multi-resolution analysis; and the suggested construction unifies many of the schemes currently in use, and, more importantly, allows designing schemes for many new settings. </p> / Thesis / Master of Applied Science (MASc)
134

Perception and Planning of Connected and Automated Vehicles

Mangette, Clayton John 09 June 2020 (has links)
Connected and Automated Vehicles (CAVs) represent a growing area of study in robotics and automotive research. Their potential benefits of increased traffic flow, reduced on-road accident, and improved fuel economy make them an attractive option. While some autonomous features such as Adaptive Cruise Control and Lane Keep Assist are already integrated into consumer vehicles, they are limited in scope and require innovation to realize fully autonomous vehicles. This work addresses the design problems of perception and planning in CAVs. A decentralized sensor fusion system is designed using Multi-target tracking to identify targets within a vehicle's field of view, enumerate each target with the lane it occupies, and highlight the most important object (MIO) for Adaptive cruise control. Its performance is tested using the Optimal Sub-pattern Assignment (OSPA) metric and correct assignment rate of the MIO. The system has an average accuracy assigning the MIO of 98%. The rest of this work considers the coordination of multiple CAVs from a multi-agent motion planning perspective. A centralized planning algorithm is applied to a space similar to a traffic intersection and is demonstrated empirically to be twice as fast as existing multi-agent planners., making it suitable for real-time planning environments. / Master of Science / Connected and Automated Vehicles are an emerging area of research that involve integrating computational components to enable autonomous driving. This work considers two of the major challenges in this area of research. The first half of this thesis considers how to design a perception system in the vehicle that can correctly track other vehicles and assess their relative importance in the environment. A sensor fusion system is designed which incorporates information from different sensor types to form a list of relevant target objects. The rest of this work considers the high-level problem of coordination between autonomous vehicles. A planning algorithm which plans the paths of multiple autonomous vehicles that is guaranteed to prevent collisions and is empirically faster than existing planning methods is demonstrated.
135

Towards a constraint-based multi-agent approach to complex applications

Indrakumar, Selvaratnam January 2000 (has links)
No description available.
136

Multi-sensor architecture development for intelligent systems

Chheda, Dhiral Laxmichand 07 October 2014 (has links)
The philosophy of research at the University of Texas – Robotics Research Group (RRG) is towards creating a foundation for an open architecture, reconfigurable intelligent machines to meet wide breadth of operational needs. An intelligent system is the one which has complete knowledge of its operating characteristics at all times (updated in real-time) and it can make on-the-fly decisions to adapt itself to the different conditions or present the best possible options to the human decision maker under specified and ranked criteria. The reality of all complex system is that they are inherently non-linear with coupled parameters. The traditional approach dealing with such systems assumes linearized models, imposing conservative bounds on the operational domain and thus limiting performance capability of the system. Recent advancements in sensor technology and availability of computational resources (embedded processing) at low cost have made real-time intelligent control feasible for complex systems. The computational intelligence envisioned in modern intelligent machines will enhance the system performance and will provide capabilities such as criteria based control, identification of incipient faults, condition based maintenance, fault tolerance, and ability to monitor performance parameters in real-time. The first step in this process is to equip a system with a comprehensive suite of sensors. These sensors will provide real-time data and awareness about both, the internal system states and the external/environmental operating conditions. The aim of this work is to establish an argument in favor of using multiple sensors in all complex electro-mechanical systems. The report discusses numerous benefits of a multi-sensor environment with suitable examples and attempts to justify its pressing need in all the existing complex mechanical systems. Case studies for a multi-sensor environment in railroad freight cars and vehicle systems are presented. Sensing requirements in freight train and vehicle systems are evaluated and suitable sensor technology and commercial sensor options are suggested for decision makers. In addition to benefits, challenges in a multi-sensor environment such as sensor noise, cabling complexities, signal processing, communication, data validation and data management, sensor fusion, information integration, maintenance etc. are addressed and best practices to alleviate these complexities are discussed in the report. This effort lays out a foundation for developing a multi-sensor system and will enable computational intelligence and structured decision making in the system. / text
137

Design and development of Thyristor based MLCR CSC

Das, Bhaba Priyo January 2014 (has links)
The new concept of Multi-Level Current Reinjection (MLCR) combines the advantages of DC ripple reinjection, multi-level conversion and soft-switching technique. Taking advantage of the soft-switching technique which uses zero current switching for the main bridge switches, thyristor based MLCR current source converter (CSC) is proposed. This concept adds self-commutation capability to thyristors and produces high quality line current waveforms. Various thyristor based MLCR CSC topologies have been simulated extensively using PSCAD/EMTDC in this thesis and their performance characteristics investigated. Questions have been raised about the ability to force the main thyristors off using the reinjection bridge in a real-world implementation, where there are inevitable stray capacitances and inductances which may influence the thyristor turn-off; and simulation switching models may not represent the switching characteristics fully or accurately. For this proof of concept, a small scale prototype has been built in the laboratory. The 3-level MLCR CSC, which increases the pulse number from 12 to 24, is chosen to verify the concept. The experimental investigation of the 3-level MLCR CSC, under steady-state conditions, verified the following: • The reinjection current allows the main bridge thyristors to be switched at negative firing angles. • This current reinjection technique allows self-commutation capability in a practical system despite the finite turn-off times of the thyristor. • This current reinjection technique improves the harmonic characteristics of the thyristor based converter. • It is observed that the deviation of the actual waveforms from the theoretical waveforms is mainly due to the snubber across the reinjection switch, and a trade-off in the choice of snubber components is required.
138

Novel stable subgridding algorithm in finite difference time domain method

Krishnaiah, K. Mohana January 1997 (has links)
No description available.
139

Electrostatic bacterial control

Noyce, Jonathan Oliver January 2002 (has links)
No description available.
140

Physical properties of additives in poly(ester-block-ether)s

Lazare, Laurent January 2000 (has links)
No description available.

Page generated in 0.0423 seconds