• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Miniature Hourglass Shaped Actuator Geometry Study Using A Finite Element Simulation

Elwell, Roston Clement 2010 May 1900 (has links)
This project investigated a miniature, hourglass-shaped actuator (MHA) and how its geometry affects performance. A custom, self-contained, finite-element simulation code predicts how each MHA deforms when pressurized internally. This analysis describes the MHA geometry's effects on four characteristics: a) work density b) mechanical advantage, c) work advantage and d) percent elongation. The first three characteristics are compared to a traditional actuator operating at the same pressure and elongation. A finite-element modeling code was tailored to study the MHA at 5 MPa internal pressure when 1) MHA height and side-wall thickness are constant and side-wall arc length varies; 2) MHA side-wall arc length and thickness are constant and the height varies; and 3) MHA side-wall thickness varies while height and side-wall arc length are fixed. Case 3 was studied using the MHA geometry with the highest work density found in either condition 1 or 2. Peak mechanical advantage, 6.47, occurs in a constant height MHA-Case 1-when the side-wall arc length is shortest. Highest elongation, 8.67%, occurs in the Case 1 MHA with the longest side-wall arc length. Finally, under Case 3, work density reaches 0.434 MJ/m3 when the side-wall thickness is 1.9 mm. The MHA has potential for active structures because its work density is high-higher than traditional actuators with the same elongation. Their small elongations limit their use; however, much work remains to determine how MHAs might be arranged in a useful array. Never the less, morphing airfoils and other active structures might benefit from embedded MHAs.

Page generated in 0.0942 seconds