• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ANOMALY DETECTION USING MACHINE LEARNING FORINTRUSION DETECTION

Vaishnavi Rudraraju (18431880) 02 May 2024 (has links)
<p dir="ltr">This thesis examines machine learning approaches for anomaly detection in network security, particularly focusing on intrusion detection using TCP and UDP protocols. It uses logistic regression models to effectively distinguish between normal and abnormal network actions, demonstrating a strong ability to detect possible security concerns. The study uses the UNSW-NB15 dataset for model validation, allowing a thorough evaluation of the models' capacity to detect anomalies in real-world network scenarios. The UNSW-NB15 dataset is a comprehensive network attack dataset frequently used in research to evaluate intrusion detection systems and anomaly detection algorithms because of its realistic attack scenarios and various network activities.</p><p dir="ltr">Further investigation is carried out using a Multi-Task Neural Network built for binary and multi-class classification tasks. This method allows for the in-depth study of network data, making it easier to identify potential threats. The model is fine-tuned during successive training epochs, focusing on validation measures to ensure its generalizability. The thesis also applied early stopping mechanisms to enhance the ML model, which helps optimize the training process, reduces the risk of overfitting, and improves the model's performance on new, unseen data.</p><p dir="ltr">This thesis also uses blockchain technology to track model performance indicators, a novel strategy that improves data integrity and reliability. This blockchain-based logging system keeps an immutable record of the models' performance over time, which helps to build a transparent and verifiable anomaly detection framework.</p><p dir="ltr">In summation, this research enhances Machine Learning approaches for network anomaly detection. It proposes scalable and effective approaches for early detection and mitigation of network intrusions, ultimately improving the security posture of network systems.</p>
2

SMART-LEARNING ENABLED AND THEORY-SUPPORTED OPTIMAL CONTROL

Sixiong You (14374326) 03 May 2023 (has links)
<p> This work focuses on solving the general optimal control problems with smart-learning-enabled and theory-supported optimal control (SET-OC) approaches. The proposed SET-OC includes two main directions. Firstly, according to the basic idea of the direct method, the smart-learning-enabled iterative optimization algorithm (SEIOA) is proposed for solving discrete optimal control problems. Via discretization and reformulation, the optimal control problem is converted into a general quadratically constrained quadratic programming (QCQP) problem. Then, the SEIOA is applied to solving QCQPs. To be specific, first, a structure-exploiting decomposition scheme is introduced to reduce the complexity of the original problem. Next, an iterative search, combined with an intersection-cutting plane, is developed to achieve global convergence. Furthermore, considering the implicit relationship between the algorithmic parameters and the convergence rate of the iterative search, deep learning is applied to design the algorithmic parameters from an appropriate amount of training data to improve convergence property. To demonstrate the effectiveness and improved computational performance of the proposed SEIOA, the developed algorithms have been implemented in extensive real-world application problems, including unmanned aerial vehicle path planning problems and general QCQP problems. According to the theoretical analysis of global convergence and the simulation results, the efficiency, robustness, and improved convergence rate of the optimization framework compared to the state-of-the-art optimization methods for solving general QCQP problems are analyzed and verified. Secondly, the onboard learning-based optimal control method (L-OCM) is proposed to solve the optimal control problems. Supported by the optimal control theory, the necessary conditions of optimality for optimal control of the optimal control problem can be derived, which leads to two two-point-boundary-value-problems (TPBVPs). Then, critical parameters are identified to approximate the complete solutions of the TPBVPs. To find the implicit relationship between the initial states and these critical parameters, deep neural networks are constructed to learn the values of these critical parameters in real-time with training data obtained from the offline solutions.  To demonstrate the effectiveness and improved computational performance of the proposed L-OCM approaches, the developed algorithms have been implemented in extensive real-world application problems, including two-dimensional human-Mars entry, powered-descent, landing guidance problems, and fuel-optimal powered descent guidance (PDG) problems. In addition, considering there is no thorough analysis of the properties of the optimal control profile for PDG when considering the state constraints, a rigid theoretical analysis of the fuel-optimal PDG problem with state constraints is further provided. According to the theoretical analysis and simulation results, the optimality, robustness, and real-time performance of the proposed L-OCM are analyzed and verified, which indicates the potential for onboard implementation. </p>

Page generated in 0.0741 seconds