• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ocr: A Statistical Model Of Multi-engine Ocr Systems

McDonald, Mercedes Terre 01 January 2004 (has links)
This thesis is a benchmark performed on three commercial Optical Character Recognition (OCR) engines. The purpose of this benchmark is to characterize the performance of the OCR engines with emphasis on the correlation of errors between each engine. The benchmarks are performed for the evaluation of the effect of a multi-OCR system employing a voting scheme to increase overall recognition accuracy. This is desirable since currently OCR systems are still unable to recognize characters with 100% accuracy. The existing error rates of OCR engines pose a major problem for applications where a single error can possibly effect significant outcomes, such as in legal applications. The results obtained from this benchmark are the primary determining factor in the decision of implementing a voting scheme. The experiment performed displayed a very high accuracy rate for each of these commercial OCR engines. The average accuracy rate found for each engine was near 99.5% based on a less than 6,000 word document. While these error rates are very low, the goal is 100% accuracy in legal applications. Based on the work in this thesis, it has been determined that a simple voting scheme will help to improve the accuracy rate.

Page generated in 0.0641 seconds