• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Decision Support System (DSS) for Machine Selection: A Cost Minimization Model

Mendez Pinero, Mayra I. 16 January 2010 (has links)
Within any manufacturing environment, the selection of the production or assembly machines is part of the day to day responsibilities of management. This is especially true when there are multiple types of machines that can be used to perform each assembly or manufacturing process. As a result, it is critical to find the optimal way to select machines when there are multiple related assembly machines available. The objective of this research is to develop and present a model that can provide guidance to management when making machine selection decisions of parallel, non-identical, related electronics assembly machines. A model driven Decision Support System (DSS) is used to solve the problem with the emphasis in optimizing available resources, minimizing production disruption, thus minimizing cost. The variables that affect electronics product costs are considered in detail. The first part of the Decision Support System was developed using Microsoft Excel as an interactive tool. The second part was developed through mathematical modeling with AMPL9 mathematical programming language and the solver CPLEX90 as the optimization tools. The mathematical model minimizes total cost of all products using a similar logic as the shortest processing time (SPT) scheduling rule. This model balances machine workload up to an allowed imbalance factor. The model also considers the impact on the product cost when expediting production. Different scenarios were studied during the sensitivity analysis, including varying the amount of assembled products, the quantity of machines at each assembly process, the imbalance factor, and the coefficient of variation (CV) of the assembly processes. The results show that the higher the CV, the total cost of all products assembled increased due to the complexity of balancing machine workload for a large number of products. Also, when the number of machines increased, given a constant number of products, the total cost of all products assembled increased because it is more difficult to keep the machines balanced. Similar results were obtained when a tighter imbalance factor was used.
2

Decision Support System (DSS) for Machine Selection: A Cost Minimization Model

Mendez Pinero, Mayra I. 16 January 2010 (has links)
Within any manufacturing environment, the selection of the production or assembly machines is part of the day to day responsibilities of management. This is especially true when there are multiple types of machines that can be used to perform each assembly or manufacturing process. As a result, it is critical to find the optimal way to select machines when there are multiple related assembly machines available. The objective of this research is to develop and present a model that can provide guidance to management when making machine selection decisions of parallel, non-identical, related electronics assembly machines. A model driven Decision Support System (DSS) is used to solve the problem with the emphasis in optimizing available resources, minimizing production disruption, thus minimizing cost. The variables that affect electronics product costs are considered in detail. The first part of the Decision Support System was developed using Microsoft Excel as an interactive tool. The second part was developed through mathematical modeling with AMPL9 mathematical programming language and the solver CPLEX90 as the optimization tools. The mathematical model minimizes total cost of all products using a similar logic as the shortest processing time (SPT) scheduling rule. This model balances machine workload up to an allowed imbalance factor. The model also considers the impact on the product cost when expediting production. Different scenarios were studied during the sensitivity analysis, including varying the amount of assembled products, the quantity of machines at each assembly process, the imbalance factor, and the coefficient of variation (CV) of the assembly processes. The results show that the higher the CV, the total cost of all products assembled increased due to the complexity of balancing machine workload for a large number of products. Also, when the number of machines increased, given a constant number of products, the total cost of all products assembled increased because it is more difficult to keep the machines balanced. Similar results were obtained when a tighter imbalance factor was used.
3

CONCURRENT LINEAR OPTIMIZATION MODEL FOR DESIGN AND MANUFACTURING TOLERANCES WITH PROCESS AND MACHINE SELECTION INCORPORATING SCRAP RATES AND MACHINE BREAKDOWN

CHANDRA, SHANTANU 27 September 2002 (has links)
No description available.

Page generated in 0.1061 seconds