• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Perte de fonction de la voie de signalisation <<PINK1/Parkine>> dans la physiopathologie de la maladie de Parkinson - Mécanismes et conséquences / Loss of function of the « PINK1/Parkin » signaling pathway in the pathophysiology of Parkinson’s disease – Mechanisms and consequences

Jacoupy, Maxime 19 September 2016 (has links)
La maladie de Parkinson (MP) est caractérisée par une dégénérescence des neurones dopaminergiques de la substance noire. Elle est le plus souvent sporadique mais des formes familiales monogéniques existent, notamment dues à des mutations de PARK2 et de PINK1. Ces gènes codent pour l'ubiquitine-protéine ligase cytosolique Parkine et la sérine/thréonine kinase mitochondriale PINK1, deux acteurs majeurs du contrôle de qualité mitochondrial. Ce travail étudie le rôle de leur interaction au niveau de la membrane mitochondriale externe dans la régulation de l'homéostasie mitochondriale.Nous avons montré que l'association de PINK1 et Parkine au complexe d'import mitochondrial TOM lors d'un stress mitochondrial permet l'import de la grande majorité des protéines adressées à la mitochondrie ; que déstabiliser ce complexe suffit à initier la mitophagie ; et que l'activation de Parkine par PINK1 facilite l'import de son substrat HSD17?10. Nous avons développé un biosenseur moléculaire inductible, permettant d'étudier la voie d'import classique des protéines à pré-séquence. Nous avons également montré, dans un modèle neuronal, qu'un stress mitochondrial, en présence de Parkine, induit une forte augmentation de l'expression de gènes clés de la biogenèse mitochondriale ; et que ces gènes sont up-régulés de façon basale dans les neurones PARK2-/-, indiquant une possible altération de la réponse aigüe au stress.Ces résultats approfondissent notre connaissance de la physiopathologie des formes autosomiques récessives de MP en soulignant l'importance de la voie PINK1/Parkine dans l'import et la biogenèse mitochondriaux. / Parkinson’s disease (PD) is linked to a specific loss of dopaminergic neurons of the substancia nigra. The disease is most often sporadic but familial monogenic forms exist, for example due to mutations in PARK2 or PINK1. Those genes encore the cytosolic ubiquitin-protein ligase Parkin and the mitochondrial serine/threonine kinase PINK1, both essential for mitochondrial quality control. This work studies the role of their interaction at the outer mitochondrial membrane in the regulation of mitochondrial homeostasis. We found that the association of PINK1 and Parkin to the mitochondrial import TOM complex during mitochondrial stress induces the import of most proteins targeted to mitochondria; that destabilizing this complex is sufficient to initiate mitophagy; and that Parkin activation by PINK1 facilitates the import of its substrate, HSD17β10. We developed an inducible BRET-based molecular biosensor to study the classical pre-sequence import pathway. We also found, in a neuronal model, that mitochondrial stress induced a strong increase in the expression of mitochondrial biogenesis key genes, in the presence of Parkin; and that these genes are basally up-regulated in PARK2-/- neurons, possibly reflecting an alteration of acute stress response. These results increase our understanding of the pathophysiology of autosomal recessive forms of PD, underlining the importance of the PINK1/Parkin pathway in mitochondrial import and biogenesis.
2

Elucidating the functional interplay between Parkinson’s disease-related proteins and the mitochondrion / Etude de l’interaction fonctionnelle entre les protéines impliquées dans la maladie de Parkinson et la mitochondrie

Bertolin, Giulia 19 November 2013 (has links)
La maladie de Parkinson (MP) est une affection neurodégénérative fréquente d’étiologie inconnue, touchant environ 5% de la population mondiale après 80 ans. Environ 10% des cas correspondent à des formes familiales à transmission mendélienne. Pendant longtemps, un dysfonctionnement mitochondrial a été soupçonné jouer un rôle dans la physiopathologie de la MP. Cette possibilité a été récemment corroborée par des découvertes majeures réalisées dans le cadre des formes autosomiques récessives. Parkine et PINK1, les produits de deux gènes associés à ces formes familiales, participent au sein d’une même voie moléculaire au contrôle de la qualité mitochondriale, par la régulation du transport, de la dynamique, de la biogenèse et de la clairance de ces organites.L’objectif de ce travail a été d’élucider certains des mécanismes moléculaires sous-jacents à la régulation de l’homéostasie mitochondriale par Parkine et PINK1. Nous avons utilisé un ensemble d’approches de biologie moléculaire et cellulaire, de biochimie et de microscopie confocale, afin d’identifier et de caractériser des interacteurs moléculaires de Parkine et PINK1 à la membrane mitochondriale externe (MME).Dans la première partie de ce travail, nous avons découvert que la Parkine et PINK1 s’associent sur la MME de mitochondries dysfonctionnelles à proximité de la translocase de la MME (TOM), un complexe dédié à l’import de la grande majorité des protéines mitochondriales. Nous avons montré que ces interactions protéiques jouent un rôle clé dans l’activation du programme de dégradation mitochondriale régulé par la voie PINK1/Parkine. Nous avons également observé que la GTPase de type dynamine Drp1, impliquée dans la fission mitochondriale, est recrutée au niveau de mitochondries endommagées à proximité de Parkine et PINK1 ; ainsi, les processus de fission et de dégradation mitochondriales pourraient être spatialement coordonnés. Dans la deuxième partie de ce projet, nous avons caractérisé l’interaction fonctionnelle entre la Parkine et l’enzyme neuroprotectrice multifonctionnelle de la matrice mitochondriale, 17B-hydroxystéroïde déshydrogénase de type 10 (HSD17B10), dont les taux s’étaient révélés être diminués chez la souris déficiente en Parkine. Nous avons mis en évidence un effet protecteur d’HSD17B10 vis-à-vis de la mitochondrie qui était indépendant de son activité catalytique. Nous avons de plus montré que la Parkine interagit directement avec HSD17B10 à proximité de la machinerie TOM et qu’elle régule positivement l’abondance mitochondriale de cette protéine ; cela suggère qu’elle pourrait promouvoir son import.Dans l’ensemble, ces résultats approfondissent notre connaissance des mécanismes moléculaires mis en jeu par la Parkine et PINK1 dans le contrôle de la qualité mitochondriale, élargissant ainsi notre compréhension de leur rôle dans la physiopathologie des formes autosomiques récessive de MP. / Parkinson’s disease (PD) is a common neurodegenerative disorder of unknown etiology, affecting nearly 5% of the world population over the age of 80. Nearly 10% of PD cases are familial forms with Mendelian inheritance pattern. Mitochondrial dysfunction has long been suspected to play a role in the physiopathology of sporadic PD. This possibility has been recently corroborated by major discoveries in the field of autosomal recessive PD. Parkin and PINK1, the products of two genes associated with these forms, participate in a common molecular pathway focused on maintenance of mitochondrial quality, with roles in mitochondrial transport, dynamics, biogenesis and clearance.The aim of this work was to elucidate some of the molecular mechanisms underlying the regulation of mitochondrial homeostasis by Parkin and PINK1. We used a combination of approaches in molecular and cell biology, biochemistry and confocal microscopy to identify and characterize molecular interactors of Parkin and PINK1 on the outer mitochondrial membrane (OMM).In the first part of my project, we discovered that Parkin and PINK1 associate on dysfunctional mitochondria in proximity of the translocase of the OMM (TOM), a complex devoted to the mitochondrial import of the vast majority of the mitochondrial proteins. We provided evidence that these associations play a key role in activation of the mitochondrial degradation program mediated by the PINK1/Parkin pathway. We also observed that the dynamin-related GTPase Drp1, involved in mitochondrial fission is recruited to defective mitochondria in proximity of Parkin and PINK1, suggesting that mitochondrial fission occurs at sites where mitochondrial clearance is initiated.In the second part of my project, we characterized the functional interaction between Parkin and the multifunctional neuroprotective mitochondrial matrix enzyme 17B-hydroxysteroid dehydrogenase type 10 (HSD17B10), previously found by the team to be altered in abundance in Parkin-deficient mice. We demonstrated that HSD17B10 exerts a mitochondrion-protective function independent of its enzymatic activity. In addition, we provided evidence that Parkin directly interacts with HSD17B10 at the TOM machinery and that it positively regulates its mitochondrial levels, possibly through the regulation of its mitochondrial import.Altogether, these results provide novel insights into the molecular mechanisms by which Parkin and PINK1 control mitochondrial quality, and deepen our understanding of the role of these proteins in the physiopathology of autosomal recessive PD.

Page generated in 0.3158 seconds