• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 5
  • 4
  • 2
  • Tagged with
  • 45
  • 45
  • 27
  • 23
  • 23
  • 20
  • 20
  • 20
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Kinematic And Force Analyses Of Overconstrained Mechanisms

Ustun, Deniz 01 September 2011 (has links) (PDF)
This thesis comprises a study on the kinematic and force analyses of the overconstrained mechanisms. The scope of the overconstrained mechanisms is too wide and difficult to handle. Therefore, the study is restricted to the planar overconstrained mechanisms. Although the study involves only the planar overconstrained mechanisms, the investigated methods and approaches could be extended to the spatial overconstrained mechanisms as well. In this thesis, kinematic analysis is performed in order to investigate how an overconstrained mechanism can be constructed. Four methods are used. These are the analytical method, the method of cognates, the method of combining identical modules and the method of extending an overconstrained mechanism with extra links. This thesis also involves the force analysis of the overconstrained mechanisms. A method is introduced in order to eliminate the force indeterminacy encountered in the overconstrained mechanisms. The results are design based and directly associated with the assembly phase of the mechanism.
32

Multi-disciplinary Design And Optimization Of Air To Surface Missiles With Respect To Flight Performance And Radar Cross Sectio

Karakoc, Ali 01 September 2011 (has links) (PDF)
This study focuses on the external configuration design of a tactical missile based on maximizing flight range while minimizing the radar signature which is a crucial performance parameter for survivability. It is known that shaping of a missile according to aerodynamic performance may have significant negative effects on the radar cross section. Thus, the impact of the geometry changes on the aerodynamic performance and the radar cross section is investigated. Suggorage models for the flight range, control effectiveness and the radar cross section (RCS) at an X band frequency are established by employing Genetic Algorithm. Accuracies of surrogate models are discussed in terms of statistical parameters. Seventeen geometrical parameters are considered as the design variables. Optimum combinations for the design variables are sought such that flight range is maximized while the radar cross section is minimized. The multi objective optimization problem is solved by imposing the static stability margin as a hard nonlinear constraint. Weighted sum approach is utilized to compare results with known missile configurations. Weights for flight range and Radar Cross Section are varied to obtain Pareto optimal solutions.
33

Ontology Based Reuse Infrastructure For Trajectory Simulation

Durak, Umut 01 July 2007 (has links) (PDF)
In this research, we developed an ontology based reuse infrastructure for trajectory simulation and investigated the use of ontologies and domain engineering practices to develop a formalized methodology to make use of the experience and knowledge leveraged from the past trajectory simulation projects. Trajectory simulation in this context is a computational tool to calculate the flight path and other parameters of munition such as its orientation or angular rates during its operation In this thesis, engineering knowledge to simulate the trajectory of a munition is captured in an ontology called Trajectory Simulation ONTology (TSONT). Concepts of trajectory simulation and the relation among these concepts are captured by using Web Ontology Language and presented as a domain model that is available for reuse. Using the formalized domain knowledge, reuse infrastructure specifications are constructed to enable the reuse of software artifacts for two main programming paradigms, which are object oriented programming and function oriented programming. UML and application frameworks are used when constructing for object oriented paradigm. And data flow diagrams are used to formalize the design of the function oriented simulations to compute the trajectory of munition. Object oriented and function oriented platform independent designs are constructed to specify the infrastructure using the knowledge captured in TSONT and made available for reuse. With constructing two different designs for two different paradigms by using the same domain model, evidence of knowledge reuse were produced. Three different case studies were carried out as infrastructure implementation. In the first case study, an object oriented application framework was developed in MATLAB for six degrees of freedom trajectory simulation using platform independent object oriented design. This framework is reused to develop two different simulations. Using the developed framework for two applications produced evidence of code reuse. In the second case, a point mass trajectory simulation framework is designed to be implemented in C# reusing the same platform independent object oriented design. This case produced the evidence of design reuse. In the last case study, a MATLAB Simulink Blockset is developed for point mass unguided trajectory simulations and two different simulations are built using the Blockset. By this case, we collected the evidence of code reuse also in function oriented paradigm.
34

A finite element based dynamic modeling method for design analysis of flexible multibody systems

Liu, Chih-Hsing 05 April 2010 (has links)
This thesis develops a finite element based dynamic modeling method for design and analysis of compliant mechanisms which transfer input force, displacement and energy through elastic deformations. Most published analyses have largely based on quasi-static and lump-parameter models neglecting the effects of damping, torsion, complex geometry, and nonlinearity of deformable contacts. For applications such as handling of objects by the robotic hands with multiple high-damped compliant fingers, there is a need for a dynamic model capable of analyzing the flexible multibody system. This research begins with the formulation of the explicit dynamic finite element method (FEM) which takes into account the effects of damping, complex geometry and contact nonlinearity. The numerical stability is considered by evaluating the critical time step in terms of material properties and mesh quality. A general framework incorporating explicit dynamic FEM, topology optimization, modal analysis, and damping identification has been developed. Unlike previous studies commonly focusing on geometry optimization, this research considers both geometric and operating parameters for evaluation where the dynamic performance and trajectory of the multibody motion are particularly interested. The dynamic response and contact behavior of the rotating fingers acting on the fixed and moving objects are validated by comparing against published experimental results. The effectiveness of the dynamic modeling method, which relaxes the quasi-static assumption, has been demonstrated in the analyses of developing an automated transfer system involved grasping and handling objects by the compliant robotic hands. This FEM based dynamic model offers a more realistic simulation and a better understanding of the multibody motion for improving future design. It is expected that the method presented here can be applied to a spectrum of engineering applications where flexible multibody dynamics plays a significant role.
35

An Elastic-plastic Beam Element

Eren, Ahmet M. 01 May 2006 (has links) (PDF)
In this thesis, a two node nonlinear elastic-plastic beam finite element is developed to analyze large deformations. The system of equations are derived from virtual work principle, and the updated Lagrangian formulation is used. Material is assumed to be isotropic and rate insensitive obeying J2-flow rule. Work hardening characteristics of material is considered and all nonlinear terms are included. For the two node iso-parametric beam element a layered model is used to analyze through-the-thickness distribution of elastic and plastic zones. A finite element program is developed and the numerical outcomes are compared with the experimental results. A good agreement is achieved between numerical and experimental results.
36

Distributed Control System For Cnc Machine Tools

Kanburoglu, Furkan A. 01 June 2009 (has links) (PDF)
&ldquo / Numerically Controlled&rdquo / (NC) machine tools, which are automatically operated by encoded (digital) commands, are capable of machining components with quality and quantity. Manufacturing industry heavily depends on these machines. Many different control architectures have been adapted in today&rsquo / s CNC technology. Centralized control system is quite popular in industry due to its ease of implementation. If the number of controlled axes on a CNC machine tool (&gt / 3), increases so does the computational burden on the central processors. Hence, more powerful processors are needed. An alternative architecture, which is not commonly used in CNC technology, is the decentralized (distributed) control. In this topology, the tasks handled by the distributed controllers that are interconnected to each other by a communication network. As the need arises, a new controller can be added easily to the network without augmenting the physical configuration. Despite its attractive features, this architecture has not been fully embraced by the CNC industry. Synchronization among the axes in the coordinated motion is proven to be quite challenging. In this thesis, alternative distributed controller architecture was proposed for CNC machine tools. It was implemented on a 3-axis CNC milling machine. Open-loop control performance was investigated under various conditions. Different communication protocols along with different physical communication interfaces and a number of controller hardware were devised. An industry-standard network (RS-485) was set up by interconnecting these distributed controllers. Different data transmission protocols were devised in order to establish appropriate communication methods. Also, computer software (a.k.a. graphical user interface), which can coordinate the interconnected controllers, interpret NC part programs and generate reference position data for each axis, was designed within the scope of this thesis.
37

Finite Element Structural Model Updating By Using Experimental Frequency Response Functions

Ozturk, Murat 01 May 2009 (has links) (PDF)
Initial forms of analytical models created to simulate real engineering structures may generally yield dynamic response predictions different than those obtained from experimental tests. Since testing a real structure under every possible excitation is not practical, it is essential to transform the initial mathematical model to a model which reflects the characteristics of the actual structure in a better way. By using structural model updating techniques, the initial mathematical model is adjusted so that it simulates the experimental measurements more closely. In this study, a sensitivity-based finite element (FE) model updating method using experimental frequency response (FRF) data is presented. This study bases on a technique developed in an earlier study on the computation of the so-called Mis-correlation Index (MCI) used for identifying the system matrices which require updating. MCI values are calculated for each required coordinate, and non-zero numerical values indicate coordinates carrying error. In this work a new model updating procedure based on the minimization of this index is developed. The method uses sensitivity approach. FE models are iteratively updated by minimizing MCI values using sensitivities. The validation of the method is realized through some case studies. In order to demonstrate the application of the method for real systems, a real test data obtained from the modal test of a scaled aircraft model (GARTEUR SM-AG19) is used. In the application, the FE model of the scaled aircraft is updated. In the case studies the generic software developed in this study is used along with some commercial programs.
38

Ride Comfort Improvement By Application Of Tuned Mass Dampers And Lever Type Vibration Isolators

Aydan, Goksu 01 July 2008 (has links) (PDF)
In this study, the efficiency of linear and rotational tuned mass dampers (TMD) and lever type vibration isolators (LVI) in improving ride comfort is investigated based on a vehicle quarter-car model. TMDs reduce vibration levels by absorbing the energy of the system, especially at their natural frequencies. Both types of TMDs are investigated in the first part of this study. Although linear TMDs can be implemented more easily on suspension systems, rotational TMDs show better performance in reducing vibration levels / since, the inertia effect of rotational TMDs is higher than the linear TMDs. In order to obtain better results with TMDs, configurations with chain of linear TMDs are obtained in the second part of the study without changing the original suspension stiffness and damping coefficient. In addition to these, the effect of increasing the number of TMDs used in the chain configuration is investigated. Results show that performance deterioration at lower frequencies than wheel hop is reduced by using chain of TMDs. In the third part of this study, various configurations of LVIs with different masses are considered and significant attenuation of vibration amplitudes at both body bounce and wheel hop frequencies is achieved. Results show that TMDs improve ride comfort around wheel hop frequency while LVIs are quite efficient around body bounce frequency. Finally, parameter uncertainty due to aging of components and manufacturing defects are investigated.
39

Non-linear Mathematical Modeling Of Gear Rotor Bearing Systems Including Bearing Clearance

Gurkan, Niyazi Ersan 01 November 2005 (has links) (PDF)
ABSTRACT NON-LINEAR MATHEMATICAL MODELING OF GEAR-ROTOR-BEARING SYSTEMS INCLUDING BEARING CLEARANCE G&Uuml / RKAN, Niyazi Ersan M.S. Department of Mechanical Engineering Supervisor: Prof. Dr. H. Nevzat &Ouml / ZG&Uuml / VEN November 2005, 130 pages In this study, a non-linear mathematical model of gear-rotor systems which consists of elastic shafts on elastic bearings with clearance and coupled by a non-linear gear mesh interface is developed. The mathematical model and the software (NLGRD 2.0) developed in a previous study is extended to include the non-linear effects due to bearing clearances by using non-linear bearing models. The model developed combines the versatility of using finite element method and the rigorous treatment of non-linear effect of backlash and bearing clearances on the dynamics of the system. The software uses the output of Load Distribution Program (LDP), which computes loaded static transmission error and mesh compliance for the contact points of a typical mesh cycle, as input. Although non-varying mesh compliance is assumed in the model, the excitation effect of time varying mesh stiffness is indirectly included through the loaded static transmission error, which is taken as a displacement input into the system. Previous computer program which was written in Fortran 77 is rewritten by using MatLAB 7.0 and named as NLGRD (Non-Linear Geared Rotor Dynamics) Version 3.0. The program is highly flexible and open to further developments. The program calculates dynamic to static load ratio, dynamic transmission error, forces and displacements at bearings. The mathematical model suggested and the code (NLGRD version 3.0) are validated by comparing the numerical results obtained from the model suggested with experimental data available in literature. The results are also compared with those of previously developed non-linear models. The effects of different system parameters such as bearing stiffness, bearing clearance and backlash on the gears are investigated. The emphasis is placed on the interaction of clearances in bearings with other system parameters.
40

Dynamic Modeling Of Spindle-tool Assemblies In Machining Centers

Erturk, Alper 01 May 2006 (has links) (PDF)
Regenerative chatter is a well-known machining problem that results in unstable cutting process, poor surface quality, reduced material removal rate and damage on the machine tool itself. Stability lobe diagrams supply stable depth of cut &amp / #8211 / spindle speed combinations and they can be used to avoid chatter. The main requirement for generating the stability lobe diagrams is the system dynamics information at the tool tip in the form of point frequency response function (FRF). In this work, an analytical model that uses structural coupling and modification methods for modeling the dynamics of spindle-holder-tool assemblies in order to obtain the tool point FRF is presented. The resulting FRF obtained by the model can be used in the existing analytical and numerical models for constructing the stability lobe diagrams. Timoshenko beam theory is used in the model for improved accuracy and the results are compared with those of Euler-Bernoulli beam theory. The importance of using Timoshenko beam theory in the model is pointed out, and the circumstances, under which the theory being used in the model becomes more important, are explained. The model is verified by comparing the results obtained by the model with those of a reliable finite element software for a case study. The computational superiority in using the model developed against the finite element software is also demonstrated. Then, the model is used for studying the effects of bearing and contact dynamics at the spindle-holder and holder-tool interfaces on the tool point FRF. Based on the results of the effect analysis, a new approach is suggested for the identification of bearing and interface parameters from experimental measurements, which is demonstrated on a spindle-holder-tool assembly. The model is also employed for studying the effects of design and operational parameters on the tool point FRF, from the results of which, suggestions are made regarding the design of spindles and selection of operational parameters. Finally, it is experimentally demonstrated that the stability lobe diagram of an assembly can be predicted pretty accurately by using the model proposed, and furthermore the stability lobe diagram can be modified in a predictable manner for improving chatter stability.

Page generated in 0.0864 seconds