• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cryogenic machining of titanium alloy

Shokrani Chaharsooghi, Alborz January 2014 (has links)
Materials which are both lighter and stronger have faced an increased demand over the past decades to fulfil the requirements across a range of industrial applications. More specifically, demands for titanium alloys have increased significantly due to its high strength to weight ratio which is particularly attractive for increasing fuel efficiency in aircrafts and cars and is also used in biomedical implants. Despite the increasing demand for titanium made products, machining titanium alloys remains a significant challenge. High material strength and hardness lead to excessive heat generation at the cutting zone which accumulates and results in high cutting temperatures due to the poor thermal conductivity. The high cutting temperatures together with inherent material properties of titanium are responsible for short tool life and poor surface finish. Despite the environmental and health drawbacks, a generous amount of cutting fluids is commonly used to control the cutting temperature in machining titanium alloys. However, conventional cutting fluids evaporate at high cutting temperatures which isolate the cutting zone by forming a vapour cushion resulting in further increases in cutting temperatures. This research investigates the effects of cryogenic cooling on machinability of Ti-6Al-4V alloy in CNC milling as compared to conventional dry and wet machining environments. Two literature reviews were conducted and a methodology has been developed and implemented consisting of three experimental stages of i) design and manufacture of a cryogenic cooling system, ii) comparative study of cryogenic cooling with dry and wet machining and iii) optimisation of cutting parameters for cryogenic machining. The major contribution of this research can be summarised as design, realisation and assessment of a novel cryogenic cooling system for CNC milling, termed cryogenic shower, which is retrofitable to an existing CNC machining centre. In addition, the research provides a thorough study on the effects of cryogenic cooling on machinability of Ti-6Al-4V alloy in comparison with dry and wet machining. The studies range from power consumption and tool wear through to surface topography and surface integrity. Furthermore, the optimum cutting parameters for cryogenic machining are identified. The research demonstrates that using the cryogenic shower has significantly improved machinability of Ti-6Al-4V through realisation of higher material removal rates, reduced tool wear and improved surface finish, surface topography and surface integrity.
2

Improvements in ultrasonically assisted turning of TI 15V3Al3Cr3Sn

Maurotto, Agostino January 2013 (has links)
Titanium alloys have outstanding mechanical properties such as high hardness, a good strength-to-weight ratio and high corrosion resistance. However, their low thermal conductivity and high chemical affinity to tool materials severely impairs their machinability with conventional techniques. Conventional machining of Ti-based alloys is typically characterized by low depth of cuts and relatively low feed rates, thus adversely affecting the material removal rates (MRR) during the machining process. Ultrasonically assisted turning (UAT) is an advanced machining technique, in which ultrasonic vibration is superimposed on a cutting tool. UAT was shown to improve machinability of difficult-to-machine materials, such as ceramics, glass or hard metals. UAT employment in the industry is, however, currently lacking due to imperfect comprehensive knowledge on materials' response and difficulties in obtaining consistent results. In this work, significant improvements in the design of a UAT system were performed to increase dynamic and static stiffness of the cutting head. Concurrent improvements on depth-of-cut controls allowed precise and accurate machining operations that were not possible before. Effects of depth of cut and cutting speed were investigated and their influence on the ultrasonic cutting process evaluated. Different cutting conditions -from low turning speeds to higher recommended levelwere analysed. Thermal evolution of cutting process was assessed, and the obtained results compared with FE simulations to gain knowledge on the temperatures reached in the cutting zone. The developed process appeared to improve dry turning of Ti-15-3-3-3 with significant reduction of average cutting forces. Improved surface quality of the finished work-piece was also observed. Comparative analyses with a conventional turning (CT) process at a cutting speed of 10 m/min showed that UAT reduced the average cutting forces by 60-65% for all levels of ap considered. Temperature profiles were obtained for CT and UAT of the studied alloy. A comparative study of surface and sub-surface layers was performed for CT- and UAT-processed work-pieces with notable improvements for the UAT-machined ones. Two- to three-fold reductions of surface roughness and improvements of other surface parameters were observed for the UAT- machined surfaces. Surface hardness for both the CT- and UAT-machined surfaces was investigated by microindentation. The intermittent cutting of the UAT-process resulted in reduction of hardening of the sub-surface layers. Optical and electronic metallographic analyses of cross-sectioned work-pieces investigated the effect of UAT on the grain structure in material's sub-surface layers. Backscatter electron microscopy was also used to evaluate the formation of α-Ti during the UAT cutting process. No grain changes or α-precipitation were observed in both the CT- and UAT-machined work-pieces.
3

Obrobitelnost kompresních kol z titanových slitin / On the Machinability of Compression Titanium-Alloys Wheels

Pepin, Faustin January 2012 (has links)
Nespornou vyhodou počítačem podporované výroby (CAM) je výrazná časová úspora při přípravě obráběcího programu. Asociativita je jedním z řešení, její místo v rámci přípravy výrobku se nachází mezi hlavní konstrukcí a technologií podniku. Pro studium asociativity byl použity CAD/CAM modely kompresoru, který díky své komplexní geomtrii posloužil jaky dobrý příklad. Tato práce se podtrhuje omezené možnosti asociativity, především pokud jde o realizaci obráběcího programu pro součást tvořenou více prvky. Dále v této studii budou prezentovány jisté možnosti zlepšení procesu. Studie asociativity v této práci je zaměřena především na obrábění, tedy její aplikace jsou využívány zejména ve oborech jako je automobilový průmysl, letectví, kosmický průmysl či stavebnictví. Kompresor studovaný v této práci je vyroben ze slitiny titanu Ti-6Al-4V a jedná se o součást využívanou v kosmickém průmyslu. Jelikož se jsou jeho rozměry velmi malé, jsou pro jeho obrábění nezbytné velmi přesné nástroje a vysoké řezné rychlosti. Tato práce představuje odlišné strategie obrábění navrhnuté pro výrobu kompresoru, společně s analýzou výsledků. Po počáteční přípravě výroby následují dvě hlavní etpy : editace programu v CATII V5 a jeho ověření v NCSimul8.
4

Development of a Robotic Cell for Removal of Tabs from Jet Engine Turbine Blade.

Sahay, Prateek January 2019 (has links)
No description available.

Page generated in 0.0532 seconds