Spelling suggestions: "subject:"machinistes (oécanique)"" "subject:"machinistes (lamécanique)""
1 |
Dynamic allocation of operators in a hybrid human-machine 4.0 contextBeauchemin, Maude 13 December 2023 (has links)
La transformation numérique et le mouvement « industrie 4.0 » reposent sur des concepts tels que l'intégration et l'interconnexion des systèmes utilisant des données en temps réel. Dans le secteur manufacturier, un nouveau paradigme d'allocation dynamique des ressources humaines devient alors possible. Plutôt qu'une allocation statique des opérateurs aux machines, nous proposons d'affecter directement les opérateurs aux différentes tâches qui nécessitent encore une intervention humaine dans une usine majoritairement automatisée. Nous montrons les avantages de ce nouveau paradigme avec des expériences réalisées à l'aide d'un modèle de simulation à événements discrets. Un modèle d'optimisation qui utilise des données industrielles en temps réel et produit une allocation optimale des tâches est également développé. Nous montrons que l'allocation dynamique des ressources humaines est plus performante qu'une allocation statique. L'allocation dynamique permet une augmentation de 30% de la quantité de pièces produites durant une semaine de production. De plus, le modèle d'optimisation utilisé dans le cadre de l'approche d'allocation dynamique mène à des plans de production horaire qui réduisent les retards de production causés par les opérateurs de 76 % par rapport à l'approche d'allocation statique. Le design d'un système pour l'implantation de ce projet de nature 4.0 utilisant des données en temps réel dans le secteur manufacturier est proposé. / The Industry 4.0 movement is based on concepts such as the integration and interconnexion of systems using real-time data. In the manufacturing sector, a new dynamic allocation paradigm of human resources then becomes possible. Instead of a static allocation of operators to machines, we propose to allocate the operators directly to the different tasks that still require human intervention in a mostly automated factory. We show the benefits of this new paradigm with experiments performed on a discrete-event simulation model based on an industrial partner's system. An optimization model that uses real-time industrial data and produces an optimal task allocation plan that can be used in real time is also developed. We show that the dynamic allocation of human resources outperforms a static allocation, even with standard operator training levels. With discrete-event simulation, we show that dynamic allocation leads to a 30% increase in the quantity of parts produced. Additionally, the optimization model used under the dynamic allocation approach produces hourly production plans that decrease production delays caused by human operators by up to 76% compared to the static allocation approach. An implementation system for this 4.0 project using real-time data in the manufacturing sector is furthermore proposed.
|
Page generated in 0.0644 seconds