• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies related to phthiocerol

Mitchell, G. C. January 1967 (has links)
No description available.
2

Characterization of a novel acetyltransferase found only in pathogenic strains of Mycobacterium tuberculosis

Crossman, David K. January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007. / Title from first page of PDF file (viewed Feb. 19, 2008). Includes bibliographical references.
3

Understanding the Role of a Hemerythrin-Like Protein in Mycobacterium Tumerculosis

Herndon, Caitlyn 01 January 2014 (has links)
According to the Centers for Disease Control and Prevention (CDC), 8 million people each year are infected with Mycobacterium tuberculosis (Mtb) leading to 1.5 million deaths annually. This staggering number calls for advancements in understanding this bacterium so progress can be made in treating and preventing the disease. It is particularly important to understand mechanisms by which TB survives inside hostile host immune cells known as macrophages and within hypoxic granuloma lesions of the lung. Preliminary microarray data has shown that a TB gene known as Rv2633c is induced upon macrophage invasion. Bioinformatic analysis of Rv2633c coding sequence shows the product of Rv2633c has homology with hemerythrin-like proteins. Hemerythrins are a class of proteins commonly used to bind oxygen and sense nitric oxide and iron, leading us to hypothesize a role for Rv2633c in surviving hypoxic or nitrosative stress encountered within macrophages and granulomas. My first aim will be to generate a reporter strain of Mycobacterium smegmatis (Msm) expressing the mCherry fluorescent protein driven by the Rv2633c promoter. This tool will allow us to determine the stress conditions (i.e. hypoxia, nitric oxide treatment, acid pH) that activate expression of this gene by measuring the change in fluorescence. Linking the regulation of Rv2633c to specific environmental cues relevant to infections in vivo will provide insight into the role of this unique protein. Secondly, a knockout mutant of Rv2633c in the attenuated M. bovis BCG will be constructed and characterized to determine the importance and function of this protein during TB infections.

Page generated in 0.104 seconds