Spelling suggestions: "subject:"macropores"" "subject:"macroporoes""
1 |
Modelling stormflow in natural subsurface pipesConnelly, L. J. January 1993 (has links)
No description available.
|
2 |
Runoff production in blanket peat covered catchmentsHolden, Joseph January 2000 (has links)
Although blanket peat covers many major headwater areas in Britain, runoff production within these upland catchments is poorly understood. This thesis examines runoff production mechanisms within the blanket peat catchments of the Moor House National Nature Reserve, North Pennines, UK. Catchments ranging from 11.4 km^ down to the hillslope and plot-scale are examined. Runoff from the monitored catchments was flashy. Lag times are short and rainwater is efficiently transported via quickflow- generating mechanisms such that flood peaks are high and low flows poorly maintained. Hillslope and plot-scale runoff measurements show that the flashy catchment response is the result of the dominance of overland flow. Typically 80 % of runoff is produced as overland flow. This occurs both on bare and vegetated surfaces. Most of the remaining runoff is generated from the upper 10 cm of the peat, except where well-connected macropore and pipe networks transfer flow through the lower layers. Below 10 cm depth the blanket peat matrix fails to contribute any significant runoff Thus most groundwater-based models of peat hydrological process are not readily applicable to these catchments. Suggestions that infiltration-excess overland flow may be largely responsible for the flashy regime of these upland catchments are not substantiated by the blanket peat infiltration data presented in this thesis. Monitoring of hillslope runoff mechanisms combined with rainfall simulation (at realistic intensities of 3-12 mm hr(^-1)) and tension- infiltrometer experiments shows that saturation-excess mechanisms dominate the response. Infiltration is relatively rapid in the upper peat layers until they become saturated and overland flow begins. High water tables result in rapid saturation of the peat mass such that even at low rainfall intensity runoff production is just as efficient as during high intensity events. While macropores have largely been ignored in blanket peat, results presented suggest that up to 30 % of runoff may be generated through them. Occasionally these macropore networks develop through the deeper peat such that runoff bypasses the matrix and runs off at depth from small outlets and larger pipe networks. Seasonal variations in runoff- generating processes can be exacerbated by drought which causes structural changes to the near-surface of the peat. This was found to result in enhanced infiltration and macropore flow which may encourage pipe network development. Flow has been monitored simultaneously from several natural pipes in a 0.4 km(^2) headwater catchment of the Tees. This catchment provides one of the few examples of pipeflow monitoring outside the shallow peaty-podzols of mid-Wales. Natural pipes are found throughout the soil profile and can be at depths of up to three metres. Ground penetrating radar was useful in identifying deep subsurface piping and suggestions are made for improvements to the application. The pipe networks were found to be complex and results demonstrate that outlet location and size may bear little relation to the form and depth of the pipe a short distance upslope. Pipes generally contribute less than 10 % to catchment runoff but on the rising and falling hydrograph limbs can contribute over 30 % to streamflow. Pipeflow lag times are short suggesting that both the shallow and deep pipes may be well connected to the surface. Thus while matrix runoff contributions at depth within the peat may be low, macropore flow mechanisms can be significant.
|
3 |
Preferential movement of solutes through soilsBruggeman, Adriana C. Jr. 22 January 1998 (has links)
Detection of unexpectedly high concentrations of agricultural pollutants in ground water have inspired investigations of the role of preferential movement of chemicals through agricultural soils. This research focuses on preferential flow and solute transport processes and the effects of agricultural management practices on these processes. Experimental methods for monitoring preferential flow and solute transport in the field as well as a stochastic, physically-based model for predicting water flow and transport of non-reactive chemicals in heterogeneous soils with naturally occurring macropores were developed and evaluated.
Field experiments, aimed at monitoring the occurrence of preferential flow and solute transport, were conducted in a conventionally-tilled and a no-till soybean field in the Coastal Plain of Virginia. A rainfall simulator was used to apply a one-hour storm at rates of 5.0, 6.5 and 7.5 cm/hr to six 1.83 by 1.83 m plots. Chloride was added to the water to serve as a non-reactive tracer. Electrical conductivity equipment provided a useful method for monitoring solute transport. The moisture and solute conditions, observed during a 28-hour period after the start of the rainfall event, clearly indicated the occurrence of preferential flow and solute movement in the field plots. The variability of the solute concentrations in the field plots was generally higher in the no-till plots than in the conventionally-tilled plots. The plots that received rain at 6.5 and 7.5 cm/hr showed more variability than the plots that received rain at 5 cm/hr. The observed solute concentrations indicated that if the solute transport would have taken place by advection only, 61% of the solute transport in the conventionally-tilled plots and 50% of the solute transport in the no-till plots could be attributed to preferential flow.
A physically-based, finite element model for simulating flow and solute transport in variably-saturated soils with macropores (MICMAC) was developed. Flow and solute transport are described by the Richards' equation and the convection-dispersion equation. Flow in the macropores is described by the Hagen-Poiseuille equation. An axisymmetric coordinate system is used to simulate the flow and solute transport from the macropore into the surrounding soil matrix, assuming a vertically oriented, surface-vented, cylindrical macropore. Flow and solute transport between the macropore and the soil matrix are driven by the pressure head at the macropore-matrix boundary. To assess the natural heterogeneity of the soil properties a stochastic component was added to the model. Flow and solute transport at the field scale were simulated by regarding the field as a collection of statistically independent, non-interacting vertical soil columns, using Monte Carlo simulation.
The sensitivity analysis of the model indicated that, for a soil with macropores, the model is most sensitive to the saturated water content of the soil matrix, the initial moisture content, and the rainfall rate. The model is not very sensitive to the macropore dimensions. Examination of the stochastic approach indicated that the representation of a heterogeneous field as a collection of non-interacting stream columns may substantially underestimate water and solute leaching. A change of 5% in the soil properties of the neighboring soil columns may underpredict the solute leaching, 24 hours after a rainstorm, by 157% for a soil column with a macropore, and by 58% for a soil column without a macropore. These differences decreased to 47% and 8%, respectively, 168 hours after the rainfall. Field application of the model suggested that the model underestimates the leaching of water and solutes from the root zone. However, the computed results were substantially better than the results obtained when no preferential flow component was included in the model. The model performed best under conditions that favored preferential flow, i.e., a high rainfall rate and high initial moisture conditions. The simulated and observed solute concentrations in the root zone agreed reasonably well, although the maxima of the observed data were generally higher than those of the simulated data. / Ph. D.
|
4 |
Quantifying changes in soil bioporosity in subarctic soils after earthworm invasionsFransson Forsberg, Joel January 2021 (has links)
Pores provide important hotspots for chemical and biological processes in soils. Earthworm burrows affect the macropore structure and their actions may create new preferential pathways for water and gas flow within soils. This, in turn, indirectly affect plants, nutrient cycling, hydraulic conductivity, gas exchange, and soil organisms. While the effects of invasive earthworms on soil properties has been well-documented in temperate and boreal ecosystems, we know little how these organism may affect tundra soils. In this study, I assessed how the three-dimensional network of soil-macropores are affected by earthworm species (Aporrectodea sp. and Lumbricus sp). I hypothesized: i) that earthworms increase the frequency of macropores with a likely biological origin (biopores); ii) effects of biopores are dependent on tundra vegetation type (meadow or heath); and iii) the macropore network properties are altered by earthworms. The hypotheses were tested using a common garden experiment with 48 mesocosms. The pore structure of each mesocosm was analyzed using X-ray CT tomography. I found that biopores increased in the tundra from on 0.05 ±0.01 % (mean ± standard deviation) in the control to about 0.59 ± 0.07 % in the earthworm treatments. However, in contrast to my second hypothesis, I found no vegetation dependent effect. Interestingly, I found that earthworms decreased the complexity and directionality of macropores. My findings strongly indicate that burrowing can severely impact the pore properties of previously uninhabited subarctic soils.
|
5 |
Carbon Turnover in Subsoil Hotspots: Are Biopores more than Voids?Banfield, Callum Colin 08 November 2018 (has links)
No description available.
|
6 |
Characterization of surface soil hydraulic properties in sloping landscapesWaduwawatte Lekamalage, Bodhinayake 23 March 2004
Saturated and near-saturated surface soil hydraulic properties influence the partition of rainfall and snowmelt into infiltration and runoff. The goal of this study was to characterize near-saturated surface soil hydraulic properties and water-conducting porosity in sloping landscapes. The specific objectives included exploration of tension and double-ring infiltrometers for estimation of soil hydraulic properties in sloping landscapes, development of an improved method for determining water-conducting porosity, and the application of these methods in characterizing soil hydraulic properties and water-conducting porosity under three land use.
Water infiltration from a double-ring infiltrometer and a tension infiltrometer at water pressures between -2.2 and -0.3 kPa was measured in a cultivated field with 0, 7, 15, and 20% slopes at Laura and under three land use (native grass, brome grass and cultivated) at St. Denis in Saskatchewan, Canada. Three-dimensional computer simulation studies were also performed for tension infiltrometer with various disc diameters, water pressures, and surface slopes. Steady infiltration rates and estimated field-saturated hydraulic conductivity (Kfs), hydraulic conductivity-water pressure relationship (K(h)), and inverse capillary length parameter were compared for different slopes and land use. These parameters were not significantly different (p<0.05) among slopes. For specific K(h) functions, a new analytical solution was developed and compared with existing methods for calculating water-conducting porosity. The new method reliably determined water-conducting porosity of surface soils and gave consistent results, regardless of the width of water pressure ranges. At the -0.3 kPa water pressure, hydraulic conductivity of grasslands was two to three times greater than the cultivated lands. Values of inverse capillary length parameter were about two times and values of Kfs about four times greater in grasslands than in cultivated fields. Water-conducting macroporosity of grasslands and cultivated fields were 0.04% and 0.01% of the total soil volume, respectively. Over 40% and 50% of the total water flux at -0.06 kPa water pressure was transmitted through macropores (pores > 1×10-3 m in diameter) of the cultivated land and the grasslands, respectively.
Experimental and simulation results of this study indicated that both tension and double-ring infiltrometers are suitable for characterization of saturated and near-saturated surface soil hydraulic properties in landscapes up to 20% slope. The new method can be used to characterize water-conducting porosity from in situ tension and double-ring infiltrometers measurements more adequately and efficiently than the existing methods. Application of these methods for three land use indicated that land use modified surface soil hydraulic properties and consequently may alter the water balance of an area by affecting the partition between, and relative amount of infiltration and surface runoff.
|
7 |
Characterization of surface soil hydraulic properties in sloping landscapesWaduwawatte Lekamalage, Bodhinayake 23 March 2004 (has links)
Saturated and near-saturated surface soil hydraulic properties influence the partition of rainfall and snowmelt into infiltration and runoff. The goal of this study was to characterize near-saturated surface soil hydraulic properties and water-conducting porosity in sloping landscapes. The specific objectives included exploration of tension and double-ring infiltrometers for estimation of soil hydraulic properties in sloping landscapes, development of an improved method for determining water-conducting porosity, and the application of these methods in characterizing soil hydraulic properties and water-conducting porosity under three land use.
Water infiltration from a double-ring infiltrometer and a tension infiltrometer at water pressures between -2.2 and -0.3 kPa was measured in a cultivated field with 0, 7, 15, and 20% slopes at Laura and under three land use (native grass, brome grass and cultivated) at St. Denis in Saskatchewan, Canada. Three-dimensional computer simulation studies were also performed for tension infiltrometer with various disc diameters, water pressures, and surface slopes. Steady infiltration rates and estimated field-saturated hydraulic conductivity (Kfs), hydraulic conductivity-water pressure relationship (K(h)), and inverse capillary length parameter were compared for different slopes and land use. These parameters were not significantly different (p<0.05) among slopes. For specific K(h) functions, a new analytical solution was developed and compared with existing methods for calculating water-conducting porosity. The new method reliably determined water-conducting porosity of surface soils and gave consistent results, regardless of the width of water pressure ranges. At the -0.3 kPa water pressure, hydraulic conductivity of grasslands was two to three times greater than the cultivated lands. Values of inverse capillary length parameter were about two times and values of Kfs about four times greater in grasslands than in cultivated fields. Water-conducting macroporosity of grasslands and cultivated fields were 0.04% and 0.01% of the total soil volume, respectively. Over 40% and 50% of the total water flux at -0.06 kPa water pressure was transmitted through macropores (pores > 1×10-3 m in diameter) of the cultivated land and the grasslands, respectively.
Experimental and simulation results of this study indicated that both tension and double-ring infiltrometers are suitable for characterization of saturated and near-saturated surface soil hydraulic properties in landscapes up to 20% slope. The new method can be used to characterize water-conducting porosity from in situ tension and double-ring infiltrometers measurements more adequately and efficiently than the existing methods. Application of these methods for three land use indicated that land use modified surface soil hydraulic properties and consequently may alter the water balance of an area by affecting the partition between, and relative amount of infiltration and surface runoff.
|
8 |
A detailed hydrologic evaluation of tile-drained macroporous soils: A field and modelling studyFrey, Steven Kurt January 2011 (has links)
The underlying objective of this research is to improve the overall understanding of how spatial and temporal variability in macroporosity and soil hydraulic properties in the shallow subsurface influence the long term mobility of agricultural nutrients, and specifically the movement of liquid swine manure, in macroporous, tile drained soils. The principal motivation for the work was to provide insight into dynamic nutrient mobility in this type of agricultural environment in order to guide both the efficiency and environmental sustainability of nutrient management practices. The results of this work facilitate the advancement of our conceptual understanding and our ability to simulate preferential flow and transport in structured agricultural soils that are subject to seasonal hydrologic patterns similar to those found in the humid continental climate of southwestern Ontario
|
9 |
GEOCHIMIE CAPILLAIRE ET COUPLAGE RETENTION-PERCOLATION EN ZONE NON SATUREE DES SOLSPettenati, Marie 09 January 2007 (has links) (PDF)
La zone non saturée (ZNS) des sols contient de l'eau plus ou moins fortement retenue par succion capillaire. Concrètement, cette succion modifie la pression interne de l'eau capillaire et donc modifie ses propriétés thermodynamiques. De ce fait, la spéciation des solutés aqueux, la solubilité des gaz et des solides sont modifiées. Pour permettre de faire des bilans de masse à l'échelle des profils, on a utilisé les courbes de rétention en eau du sol, qui relient un volume d'eau porale à une gamme de succion capillaire. A cette dernière gamme sont associées les propriétés de la succion moyenne. Certains modèles de courbes de rétention sont spécialement adaptés au domaine des fortes succions et ils sont ici étudiés en détail. Leur utilisation permet de constater que les volumes retenus à des succions géochimiquement significatives peuvent atteindre plusieurs dizaines de litres par mètre cube de sol et ainsi participer au transfert de masse en profondeur. Plusieurs faits d'observations pourraient être re-interprétés par cette approche capillaire, comme les successions anormales de paragénèses dans certains régolites.<br />Des premières études de bilans de masse ont été réalisées en s'appuyant sur un modèle en double porosité, avec un domaine macroporal de percolation, et un domaine microporal de rétention. Ces deux zones sont couplées par des échanges diffusifs. Le modèle utilisé est celui des colonnes de transfert-réactif 1Dde PhreeqC, un des modèles géochimiques les plus courants. Les caractéristiques géochimiques des solutions capillaires sont calculées avec Thermo-ZNS, un logiciel de calculs thermodynamiques développé pour la ZNS au BRGM. Les résultats de simulation des colonnes mettent en évidence l'effet de la capillarité sur la stabilité des minéraux, la vitesse des réactions et la complexation de surface, consistant avec les observations naturelles de terrain.
|
10 |
A detailed hydrologic evaluation of tile-drained macroporous soils: A field and modelling studyFrey, Steven Kurt January 2011 (has links)
The underlying objective of this research is to improve the overall understanding of how spatial and temporal variability in macroporosity and soil hydraulic properties in the shallow subsurface influence the long term mobility of agricultural nutrients, and specifically the movement of liquid swine manure, in macroporous, tile drained soils. The principal motivation for the work was to provide insight into dynamic nutrient mobility in this type of agricultural environment in order to guide both the efficiency and environmental sustainability of nutrient management practices. The results of this work facilitate the advancement of our conceptual understanding and our ability to simulate preferential flow and transport in structured agricultural soils that are subject to seasonal hydrologic patterns similar to those found in the humid continental climate of southwestern Ontario
|
Page generated in 0.0502 seconds