• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A LA-ICPMS Sr Isotope and Trace Element Study of Plagioclase and Clinopyroxene of the Higganum Dike, Connecticut: Determining the Magma Source of the Central Atlantic Magmatic Province

Harper, Caprise Steadman 17 November 2009 (has links) (PDF)
The Higganum dike of Connecticut is one of the earliest basaltic dikes of the Central Atlantic Magmatic province and is geochemically representative of the widespread low-Ti basaltic lavas (~1 wt % TiO2) that make up the majority of the province in North America. Liquid compositions calculated from Cr-rich clinopyroxene cores from the Higganum dike are significantly more primitive than the bulk rock with average Mg# s of 0.63 compared to the Higganum dike which has Mg #'s ~ 0.55. However, the negative Nb and positive Pb anomalies that are seen in trace element patterns of the low-Ti group are also found in the liquids calculated from the Cr-rich clinopyroxene cores. Ca-rich plagioclase cores that probably come up from depth with the Cr-rich clinopyroxenes were found to be more radiogenic than bulk Earth with 87Sr/86Sri ratios ranging from 0.7057 to 0.7064. We conclude that this enriched isotopic signature and the trace element signatures of primitive liquids calculated from clinopyroxene are inherited from the source. This source is identified as a subduction-enriched metasomatized lithospheric mantle. High-Ti magmas (~2-5 wt % TiO2) that are limited to a small geographic area of the Central Atlantic Magmatic Province were found to be unrelated to the low-Ti magmas. These two groups probably originated from different degrees of partial melting of different sources and follow distinctive differentiation paths.

Page generated in 0.0519 seconds