• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 28
  • 15
  • 6
  • 3
  • 2
  • Tagged with
  • 107
  • 25
  • 21
  • 20
  • 18
  • 16
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Dynamics of Magma Recharge and Mixing at Mount Hood Volcano, Oregon -- Insights from Enclave-bearing Lavas

Ellowitz, Molly Kathryn 30 July 2018 (has links)
Magma recharge events and subsequent mixing processes are understood to precede volcanic eruptions. Textural evidence of intrusion of hot, mafic magma into a cooler, rheologically locked silicic magma is commonplace. Solidified "blobs" of injected magma, called enclaves, are evidence of magma mixing, but the petrological and mechanical conditions during their formation are debated. Mount Hood, Oregon consistently erupts andesite bearing compositionally similar enclaves. These enclaves are evidence of mingling and mixing of two magmas. However, due to the compositional similarity between enclave and host lava (e.g. ~1-5 wt.% difference in SiO2), it is unclear whether the preserved enclaves represent; 1) partially hybridized mafic melt remaining after mixing with significant crystal exchange with the host magma or 2) the preserved remnants of the intruding magma during recharge, with no homogenization or crystal exchange with the host magma. The aim of this study is to understand how and why enclaves form in compositionally similar host magmas, such as those at Mount Hood. Building off previous research, we utilize a combination of field observations, chemical analyses, and numerical modeling to constrain the rheology of the magmas prior to and during mixing. The degree of magma mixing is dependent on the viscosity contrast between the host and intruding magmas. Since these magmas are similar compositionally, variations in other magmatic properties such as crystallinity, and therefore temperature, and density may drive the viscosity differences between the host and intruding magmas needed for enclave formation. The enclaves at Mount Hood are vesicular (13-28%), coarse-grained; made up of mainly groundmass crystals (200-450 µm) with sparse microlites (< 200 µm), glass (450 µm) proportions, and rarely contain quenched margins. Additionally, crystals within the host magma show preferential alignment along the margins between host and enclave, suggesting a fluid behavior of the host magma during mixing. Based on textural and compositional evidence, we hypothesize that the intruding magma was buoyant, viscous, and crystalline, due to decompression-induced crystallization and exsolution of volatiles, during recharge and ascent to the shallow magma reservoir. Injection and underplating of the viscous crystalline intruding magma into a hot convecting host magma induces enclave formation. Crystallization temperatures differ by only 6-15 °C between host and enclave lavas, derived by the two pyroxene geothermometry method by Putrika (2008). These crystallization temperatures are consistent with crystallization in compositionally similar magmas. However, with such similar crystallization and liquidus temperatures, maintaining a viscosity contrast between the mixing magmas for enclave survival after formation suggests other properties, apart from temperature, must explain the viscosity contrast needed for enclave survival after enclave dispersal and thermal equilibration occurs. The presence of bubbles, from exsolution during crystallization, within the enclave magma increases the viscosity while simultaneously decreasing the density. Therefore, the presence of bubbles increases the viscosity of the intruding magma and maintains the viscosity contrast during the mixing process after thermal equilibration occurs. Additionally, if degassing occurs, rapid crystallization maintains the high viscosity of the enclaves. The enclaves observed at Mount Hood represent the solidified remnants of the last recharge event prior to eruption. The presence of compositionally similar enclaves and host lavas suggest a transient precursor event just prior to eruption at Mount Hood and can be applied to other recharge-driven arc volcanic systems.
42

Viscosity, deformation and permeability of bubbly magma : applications to flow and degassing in volcanic conduits /

Rust, Alison C. January 2003 (has links)
Thesis (Ph. D.)--University of Oregon, 2003. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 190-205). Also available for download via the World Wide Web; free to University of Oregon users.
43

An experimental study of liquid-phase separation in the systems Fe2SiO4-Fe3O4-KAlSi2O6-SiO2-H2O, Fe3O4-KAlSi2O6-SiO2-H2O and Fe3O4-Fe2O3-KAlSi2O6-SiO2-H2O with or without P, S, F, Cl or Ca0.5Na0.5Al1.5Si2.5O8: Implications for immiscibility in volatile-rich natural magmas

Lester, GREGORY W 11 April 2012 (has links)
Abstract Isobaric (200 MPa) experiments have been performed to investigate the effects of H2O alone or in combination with P, S, F or Cl on the phase relations and elemental and oxygen isotopic partitioning between immiscible silicate melts in the systems Fe2SiO4-Fe3O4-KAlSi2O6-SiO2, Fe3O4-KAlSi2O6-SiO2 and Fe3O4-Fe2O3-KAlSi2O6-SiO2 +/- plagioclase (An50). Experiments were heated in a newly-designed rapid-quench internally-heated pressure vessel at 1075, 1150 or 1200 oC for 2 hours. Water alone or in combination with P, S, or F significantly increases the temperature and composition range of two-liquid fields at fO2= NNO and MH buffers. Water-induced suppression of liquidus temperatures, considered with the effects of pressure on two-liquid fields stability in silicate melts, suggests that liquid phase separation may occur in some volatile-rich silicate magmas at pressures up to 2GPa. Two-liquid partition coefficients for Fe, Si, P and S correlate well with the degree of polymerization of the SiO2-rich conjugate melts and the data can be applied to assess the involvement of liquid-phase separation in the genesis of coexisting volatile-rich magmas. The partitioning of trace concentrations of selected HFSE, REE and transition elements between immiscible experimental volatile-rich melts at 1200 oC, 200 MPa has been determined at QFM, NNO and MH oxygen buffers. Water generally increases the partitioning of HFSE, REE and transition elements into the Fe-rich melt. Water alone, or combined with P or S, produces nearly parallel partitioning trends for HFSE and REE. Absolute partitioning values of transition elements are strongly dependent on the network-modifier composition of the melt. 18O in experimental immiscible melts with H2O or H2O and P or S partitions preferentially into the felsic conjugate melt (δ18O felsic melt- δ18O mafic melt values range from 0.4 to 0.8 permil) consistent with observations in anhydrous immiscible silicate melts. The expansion of the P-T-X-fO2 stability ranges of two- or three-liquid fields observed in the experimental melts demonstrates that liquid-immiscibility may be an important process in the evolution of some volatile-rich natural magmas. The results support an immiscible petrogenetic origin for some iron-oxide dominated, Kiruna-type, ore-deposits. / Thesis (Ph.D, Geological Sciences & Geological Engineering) -- Queen's University, 2012-04-10 15:06:35.797
44

Volatiles in basaltic magmas from central Mexico : from subduction to eruption /

Johnson, Emily Renee. January 2008 (has links)
Thesis (Ph. D.)--University of Oregon, 2008. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 153-167). Also available online in Scholars' Bank; and in ProQuest, free to University of Oregon users.
45

Reactions between country rock xenoliths and the magma of Uitkomst Complex, with implications for the origin of the sulphide mineralisation

Hulley, Vierah. January 2005 (has links)
Thesis (M. Sc.(Geology))-University of Pretoria, 2005. / Includes bibliographical references. Mode of access: World Wide Web.
46

Reactive melt transport in the mantle and petrogenesis of Hawaiian post-erosional magmas /

Reiners, Peter William. January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [137]-147).
47

Processes and time scales of differentiation in silicic magma chambers chemical and isotopic investigations /

Snyder, Darin C. January 2005 (has links)
Thesis (Ph. D.)--Miami University, Dept. of Geology, 2005. / Title from second page of PDF document. Document formatted into pages; contains [3], viii, 216 p. : ill. Includes bibliographical references (p. 151-159).
48

Geologia e aspectos petrológicos das rochas intrusivas e efusivas mesozóicas de parte da borda leste da Bacia do Paraná no Estado de São Paulo /

Machado, Fábio Braz. January 2005 (has links)
Orientador: Antonio José Ranalli Nardy / Banca: Leila Soares Marques / Banca: Marcos Aurélio Farias de Oliveira / A investigação petrográfica e geoquímica das rochas intrusivas associadas à Província Magmática do Paraná (PMP), na porção leste da Bacia do Paraná, no Estado de São Paulo, mostraram que as rochas estudadas são constituídas essencialmente por plagioclásio, augita, minerais opacos e pigeonita, caracterizando diabásio com texturas predominantemente intergranular, subofítica e ofítica. Dados geoquímicos indicaram que as rochas apresentam natureza básica, afinidade toleítica e podem ser classificadas como pertencentes ao grupo de alto titânio (ATi) da PMP. Além disso, as diferenças geoquímicas também indicam que as intrusivas pertencem aos subgrupos (magmas-tipo) Paranapanema (PAR) e Pitanga (PIT), sendo que a distribuição destes magmas pela área estudada não se faz ao acaso. O tipo PAR ocorre nos sills da região de Campinas, enquanto que PIT nas regiões de Cajuru, Leme, e Iracemápolis. Para comparação geoquímica, os derrames próximos também foram investigados, onde se observou que as amostras coletadas nas regiões de Franca, Igarapava e Rifaina em São Paulo, e São Sebastião do Paraíso, em Minas Gerais, são pertencentes ao magma-tipo Urubici (URU), já aquelas da região de Brotas e Ribeirão Preto são do tipo PIT. Contudo, as concentrações de ETRs, para as amostras representativas dos três magmas-tipo, mostraram que, embora as rochas intrusivas (PAR e PIT) e derrames (URU) possam ter uma mesma fonte mantélica, foram submetidas a processos de evolução magmática distintos. / Petrographic and geochemical investigations of the intrusive rocks related to the Magmatic Paraná Province (PMP), in the east portion of Paraná Basin, São Paulo State, have showed that the studied rocks are constituted mainly by plagioclase, augite, magnetite and pigeonite. That characterize intergranular, subophitic and ophitic diabases. Geochemical data have indicated that rocks are basic, with toleiitic affinity and can be included to the high titanium (HTi) of the PMP group. Moreover, the geochemical differences point out that the intrusive rocks belong to Paranapanema (PAR) and Pitanga (PIT) sub-groups (magmas-type), and the magma type distribution is well sectioned. The Paranapanema Magma type occurs like sills, in the neighborhood of Campinas, meanwhile Pitanga Type occurs in Cajuru, Leme, and Iracemápolis neighborhood. In order to compare, the nearby flows were also investigated, and was observed that samples collected in Franca, Rifaina e Igarapava in São Paulo, and São Sebastião do Paraíso, in Minas Gerais, neighborhoods belong to the Urubici magma-type (URU). Magmas from Brotas and Ribeirão Preto are PIT type. The concentrations of ETRs to the representative samples of three magmas-type have showed that intrusivas rocks (PAR and PIT) and lavas (URU) possibly were submitted to magmatic evolution different processes. / Mestre
49

Towards a magmatic ‘barcode’ for the south-easternmost terrane of the Kaapvaal Craton, South Africa

Gumsley, Ashley Paul 09 December 2013 (has links)
M.Sc. (Geology) / The south-easternmost Kaapvaal Craton is composed of scattered inliers of Archaean basement granitoid-greenstone terrane exposed through Phanerozoic cover successions. In addition, erosional remnants of the supracrustal Mesoarchaean Pongola Supergroup unconformably overlay this granitoid-greenstone terrane in the same inliers. Into this crust a variety of Precambrian intrusions occur. These are comprised of SE-, ENE- and NE-trending dolerite dykes. Also, the Hlagothi Complex intrudes into Pongola strata in the Nkandla region, particularly the quartzites of the basal Mantonga Formation. The whole area, including Phanerozoic strata, has in turn been intruded by Jurassic sills and dykes related to the Karoo Large Igneous Province. All the rocks of the Archaean inliers, with the exception of the Jurassic sills and dykes have been subjected to greenschist facies metamorphism and deformation, with petrographic, Ar-Ar geochronologic and palaeomagnetic studies attesting to this. This metamorphism and deformation is associated with the Mesoproterozoic orogeny from the nearby Namaqua-Natal Mobile Belt located to the south. This orogeny has a decreasing influence with distance from the cratonic margin, and is highly variable from locality to locality. However, it is generally upper greenschist facies up to a metamorphic isograd 50 km from the craton margin. Overprints directions seen within the palaeomagnetic data confirm directions associated with the post-Pongola granitoids across the region and the Namaqua-Natal Mobile Belt. The dolerite dykes consist of several trends and generations. Up to five different generations within the three Precambrian trends have potentially been recognised. SEtrending dykes represent the oldest dyke swarm in the area, being cross-cut by all the other dyke trends. These dykes consist of two possible generations with similar basaltic to basaltic andesite geochemistry. They provide evidence of a geochemically enriched or contaminated magma having been emplaced into the craton. This is similar to SE-trending dolerite dyke swarms across the Barberton-Badplaas region to the north from literature. In northern KwaZulu-Natal the SE-trending dolerite dyke swarms have been geochronologically, geochemically and paleomagnetically linked to either ca. 2.95 or ca. 2.87 Ga magmatic events across the Kaapvaal Craton. The 2866 ± 2 Ma Hlagothi Complex is composed of a series of layered sills intruding into Nkandla sub-basin quartzites of the Pongola Supergroup. The sills consist of meta-peridotite, pyroxenite and gabbro. At least two distinct pulses of magmatism have been recognised in the sills from their geochemistry. The distinct high-MgO units are compositionally different from the older Dominion Group and Nsuze Group volcanic rocks, as well as younger Ventersdorp volcanic rocks. This resurgence of high-MgO magmatism is similar to komatiitic lithologies seen in the Barberton Greenstone Belt. It is indicative of a more primitive magma source, such as one derived from a mantle plume. A mantle plume would also account for the Hlagothi Complex and the widespread distribution of magmatic events of possible temporal and spatial similarity across the craton. Examples include the layered Thole Complex, gabbroic phases of the ca. 2990 to 2870 Ma Usushwana Complex, and the 2874 ± 2 Ma SE-trending dykes of northern KwaZulu-Natal already described above and dated herein. A generation of NE-trending dolerite dykes in northern KwaZulu-Natal can also be palaeomagnetically linked to this event with either a primary or overprint direction. Flood basalts seen within the upper Witwatersrand and Pongola Supergroups (i.e., Crown, Bird, Tobolsk and Gabela lavas) may also be related. This large, voluminous extent of magmatism allows us to provide evidence for a new Large Igneous Province on the Kaapvaal Craton during the Mesoarchaean. This new Large Igneous Province would encompass all of the above mentioned geological units. It is possible that it could be generated by a shortlived transient mantle plume(s), in several distinct pulses. This plume would also explain the development of unconformities within the Mozaan Group. This is reasoned through thermal uplift from the plume leading to erosion of the underlying strata, culminating in the eruption of flood basalts coeval to the Hlagothi Complex. Marine incursion and sediment deposition would occur during thermal subsidence from the plume into the Witwatersrand-Mozaan basin. This magmatic event also assists in resolving the apparent polar wander path for the Kaapvaal Craton during the Meso- to Neoarchaean. Between existing poles established for the older ca. 2.95 Ga Nsuze event, to poles established for the younger ca. 2.65 Ga Ventersdorp event, a new magnetic component for this ca. 2.87 Ga magmatic event can be shown. This new component has a virtual geographic pole of 23.4° N, 53.4° E and a dp and dm of 8.2° and 11.8° for the Hlagothi Complex, with a similar magnetic direction seen in one generation of NE-trending dolerite dykes in the region. This new ca. 2870 Ma addition to the magmatic barcode of the Kaapvaal Craton allows for comparisons to be made to other coeval magmatic units on cratons from around the world. Specific examples include the Millindinna Complex and the Zebra Hills dykes on the Pilbara Craton. Precise age dating and palaeomagnetism on these magmatic units is needed to confirm a temporal and spatial link between all the events. If substantiated, this link would assist in further validating the existence of the Vaalbara supercraton during the Mesoarchaean. After the Hlagothi Complex event, different pulses of magma can be seen associated with the Neoarchaean Ventersdorp event. A generation of NE-trending dolerite dykes in the region was dated herein at 2652 ± 11 Ma. In addition, a primary Ventersdorp virtual geographic pole established in Lubnina et al. (2010) from ENE-trending dolerite dykes was confirmed in this study. This ENE-trending dolerite dyke has a virtual geographic pole of 31.7° S, 13.6° E and a dp and dm of 7.0° and 7.2°. This date and virtual geographic poles from NE- and ENE-trending dolerite dyke swarms in northern KwaZulu-Natal match up with NE- and E-trending palaeostress fields seen in the Neoarchaean Ventersdorp and proto- Transvaal volcanics by Olsson et al. (2010). Both generations of dolerite dykes also demonstrate variable geochemistry. The NE-trending dolerite dyke swarm is tholeiitic, and the ENE dolerite dyke swarm is calc-alkaline. In addition, some of the tholeiitic NE-trending dolerite dykes have a similar magnetic component to NE-trending dolerite dykes much further to the north in the Black Hills area according to Lubnina et al. (2010). This magnetic component is also similar to the Mazowe dolerite dyke swarm on the Zimbabwe Craton. The NE-trending dolerite dykes in the Black Hills area differ geochemically from those in northern KwaZulu-Natal though, but are also of ca. 1.90 Ga age. The Mazowe dolerite dyke swarm was linked to the dyke swarm of the Black Hills dyke swarm through palaeomagnetic studies. The Mazowe dolerite dyke swarm however is geochemically similar to the NE-trending dolerite dykes of northern KwaZulu-Natal, creating greater complexity in the relationship between the three dyke swarms. It is clear from the complex array of dolerite dyke swarms and other intrusions into these Archaean inliers of northern KwaZulu-Natal, that much more work on the dykes within the south-easternmost Kaapvaal Craton needs to be done. This will resolve these complex patterns and outstanding issues with regard to their palaeo-tectonic framework.
50

Finite element simulations of shear aggregation as a mechanism to form platinum group elements (PGEs) in dyke-like ore bodies

Mbandezi, Mxolisi Louis January 2002 (has links)
This research describes a two-dimensional modelling effort of heat and mass transport in simplified intrusive models of sills and their feeder dykes. These simplified models resembled a complex intrusive system such as the Great Dyke of Zimbabwe. This study investigated the impact of variable geometry to transport processes in two ways. First the time evolution of heat and mass transport during cooling was investigated. Then emphasis was placed on the application of convective scavenging as a mechanism that leads to the formation of minerals of economic interest, in particular the Platinum Group Elements (PGEs). The Navier-Stokes equations employed generated regions of high shear within the magma where we expected enhanced collisions between the immiscible sulphide liquid particles and PGEs. These collisions scavenge PGEs from the primary melt, aggregate and concentrate it to form PGEs enrichment in zero shear zones. The PGEs scavenge; concentrate and 'glue' in zero shear zones in the early history of convection because of viscosity and dispersive pressure (Bagnold effect). The effect of increasing the geometry size enhances scavenging, creates bigger zero shear zones with dilute concentrate of PGEs but you get high shear near the roots of the dyke/sill where the concentration will not be dilute. The time evolution calculations show that increasing the size of the magma chamber results in stronger initial convection currents for large magma models than for small ones. However, convection takes, approximately the same time to cease for both models. The research concludes that the time evolution for convective heat transfer is dependent on the viscosity rather than on geometry size. However, conductive heat transfer to the e-folding temperature was almost six times as long for the large model (M4) than the small one (M2). Variable viscosity as a physical property was applied to models 2 and 4 only. Video animations that simulate the cooling process for these models are enclosed in a CD at the back of this thesis. These simulations provide information with regard to the emplacement history and distribution of PGEs ore bodies. This will assist the reserve estimation and the location of economic minerals.

Page generated in 0.0342 seconds