• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 7
  • Tagged with
  • 31
  • 14
  • 13
  • 11
  • 10
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude des émissions radio aurorales de Saturne, modélisation et aurores UV

Lamy, Laurent 09 September 2008 (has links) (PDF)
Cette thèse porte sur l'étude du rayonnement radio auroral kilométrique de Saturne (SKR pour Saturn Kilo- metric Radiation) observé de façon quasi-continue par les antennes radio de la sonde Cassini depuis son entrée en orbite autour de Saturne en juillet 2004. Comme les rayonnements radio auroraux des autres planètes magnétisées, le SKR est généré sur des lignes de champ magnétique de haute latitude près des pôles magnétiques. Tirant parti de plusieurs années d'observations, les propriétés macroscopiques du SKR (spectre, polarisation, conjuguaison des sources de chaque hémisphère, mode d'émission) sont déduites par une analyse statistique. Elles montrent en particulier que les caractéristiques de l'émission dépendent fortement de la position de l'observateur. Ceci est une conséquence directe de l'anisotropie du SKR qui engendre de forts effets de visibilité, visibles dans les cartes d'intensité temps-fréquence (arcs, régions d'invisibilité de l'émission). La simulation de ces effets de visibilité apporte de nouvelles contraintes sur les propriétés microscopiques des sources (énergie et distribution des électrons auroraux). Le SKR est connu pour être modulé à une période variable. Une analyse de la variation de cette période radio sur plusieurs années révèle des oscillations à court terme de l'ordre de 20-30 jours dont l'origine est attribuée à la variation de la vitesse caractéristique du vent solaire au niveau de Saturne. Une étude parallèle du rayonnement auroral kilométrique terrestre (AKR), observé lors du survol de la Terre par Cassini en août 1999, met en évidence la découverte d'une modulation diurne semblable à celle du SKR. Enfin, la technique de goniopolarimétrie permet de faire de l'imagerie radio des sources du SKR. L'étude de leur distribution moyenne montre pour la première fois l'existence d'un ovale radio. La comparaison des images des sources du SKR avec celles des ovales auroraux (observés dans l'ultraviolet lointain par le télescope Hubble), ainsi que de leur puissance respective, montre une association étroite entre ces deux processus d'émission.
2

Etude des émissions naturelles dans la plasmasphère, reliées à la gyrofréquence électronique, à l'aide de données de la mission multi satellite CLUSTER

El-Lemdani Mazouz, Farida 30 June 2008 (has links) (PDF)
Cette thèse rassemble une série de travaux sur les émissions naturelles observées dans la partie externe de la plasmasphère terrestre par la mission multi-satellites CLUSTER, et plus précisément par l'instrument WHISPER. Parmi les émissions observées, citons les ondes électrostatiques électroniques observées entre deux gyrofréquences électroniques successives. Ces ondes sont couramment appelées (n+½)fce et sont aussi bien observées dans la magnétosphère terrestre que dans celles d'autres planètes magnétisées. Nous proposons une classification de toutes les émissions naturelles observées dans la plasmasphère, basée sur les caractéristiques spectrales déterminées lors d'études d'événements. Nous nous intéresserons ensuite aux les trois types principaux d'ondes rencontrées : émissions aux n(1.1)fce, aux (n+½)fce et aux nfce. Ces dernières, mises en évidence grâce à la bonne résolution de l'instrument WHISPER, n'avaient jamais été observées auparavant. Une étude systématique sur trois années de données (la période 2002 - 2004) a permis de localiser les différentes émissions observées en secteur MLT et en latitude magnétique. Par des études d'événements multi-satellites, et par l'étude statistique, nous avons pu mettre en évidence l'importance de la distance radiale à la plasmapause sur les caractéristiques (intensité, nombre d'harmoniques présentes) des émissions aux (n+½)fce observées. Pour quantifier cette distance à la plasmapause, nous avons défini un indicateur utilisant la valeur de la fréquence plasma, mesurée par l'instrument WHISPER, lors de la traversée de l'équateur magnétique. Nous avons aussi étudié l'influence de l'activité géomagnétique, à travers les variations des indices AE, Kp et Dst, sur les trois types d'ondes étudiés. En examinant les données de l'instrument PEACE de la missions CLUSTER, deux formes différentes de la fonction de distribution, dépendant de l'intensité des ondes aux (n+½)fce, ont été mises en évidence. Enfin, nous nous sommes familiarisés avec l'utilisation d'un code particulaire et avons retrouvé les modes propres du plasma prédits par la théorie linéaire.
3

Propagation des ondes MHD dans les couches de courant.<br />Structure des modes et transferts énergétiques.<br />Comparaison avec les données CLUSTER.

Fruit, Gabriel 24 February 2003 (has links) (PDF)
Depuis le succès de la mission CLUSTER, nous pouvons étudier la structure tridimensionnelle des perturbations basse fréquence se propageant dans les régions clefs de la magnétosphère terrestre (magnétopause, queue magnétique). Afin d'aider l'interprétation de ces<br />données cette thèse propose un cadre théorique auto-cohérent visant à étudier la réponse linéaire<br />d'une couche de plasma non homogène à une perturbation initiale, dans l'approximation de la MHD<br />idéale. En particulier, le calcul est mené jusqu'à la reconstruction finale des signaux<br />spatio-temporels avec une discussion des amplitudes obtenues et des transferts énergétiques qui en<br />découlent. Cette dernière étape est essentielle dans la perspective d'une comparaison avec les<br />données CLUSTER.<br /><br />L'étude des modes propres de la queue magnétosphérique terrestre montre l'existence de deux<br />catégories d'oscillations : des modes globaux oscillant à des fréquences discrètes et confinés au<br />centre de la couche, et des modes continus liés au phénomène d'absorption résonante et dont<br />l'amplitude décroît au cours du temps. En utilisant diverses géométries de pulses initiaux, nous<br />étudions le couplage entre l'excitateur et ces modes propres. Il est mis en évidence que le<br />couplage avec les modes globaux est optimal pour un pulse dont la taille est voisine de l'épaisseur<br />de la couche. Même dans ce cas, les fluctuations restent cependant modestes. En revanche, avec le<br />même pulse initial, l'absorption du signal dans le continuum est efficace et conduit à un transfert<br />d'énergie non négligeable des ondes vers le plasma.<br /><br />Enfin, un exemple d'oscillations magnétiques mesurées par CLUSTER est analysé et confronté<br />avec les résultats du modèle théorique. En effet l'étude théorique permet de préciser la nature des<br />perturbations ainsi que leur origine, dans l'hypothèse où ces fluctuations obéissent à une<br />description MHD.
4

Kinetic investigation of the impulsive penetration of 2D plasma elements into the Earth's magnetosphere

Echim, Marius 05 July 2004 (has links)
In this thesis I investigate the dynamics of charged particles and plasma into non-uniform distributions of the electric and magnetic fields. In the first part attention is focused on the motion of test particles. The interaction between particles as well as the perturbations they might produce to the external charge and current density are neglected. I investigate a distribution of the magnetic field that depends on only one spatial coordinate, x, with the Bx component of the magnetic field being equal to zero everywhere, like in tangential discontinuities. The magnetic vector, B, can rotate across the discontinuity by an angle α ∈" [00, 1800]. In addition to the B-field distribution I assumed different distributions of the electric field, E, with Ex = 0. I have considered three cases: (A) a uniform electric field; (B) a non-uniform electric field perpendicular everywhere to B and conserving the zero order drift, and (C) a non-uniform electric field, perpendicular everywhere to B and conserving the magnetic moment of the drifting particles. The particles are drifting into these steady state electromagnetic field distributions; their orbits together with the path of the first order guiding center are integrated numerically. The numerical results show that the ”antiparallel” distribution of the magnetic field (obtained when α = 1800) with B = 0 at x = 0 does not produce anomalous acceleration of the test-particle as assumed in some steady state reconnection models. Although the zero and first order guiding center approximations diverge where B = 0, the exact equation of motion is not singular, it can be integrated throughout the integration time. The mathematical singularity of the approximative solutions does not correspond to a “true” (physical) singularity of the exact equation of motion. When the magnetic field is sheared with a non-zero By-component, and B can rotate with respect to E (case A), the particle orbit is confined into a sheath centered onto the x-position where B becomes parallel to E. Partial or total penetration of the test-particle is equally possible, as demonstrated for the E-field distributions of case B and case C. In case C the distance of penetration depends on the initial total energy of the test particles. Except for one of six different configurations considered, the reversal point of Bz does not correspond to a point of particle acceleration in the direction normal to B nor is the stopping point of the particle's motion in the direction normal to B. Indeed, it is the relative orientation between E and B, together with the vi total initial energy of the particle that determine the distance of penetration across the sheared magnetic field distribution. Penetration into the region of non-uniform magnetic field produces separation of charges. Particles with the highest energy are deflected the most. In the second part of the thesis I treat the dynamics of an ”ensemble” of electrons and protons forming a plasma stream. The plasma flow is spatially two-dimensional. In this case the plasma ”internal” contribution to the external fields is evaluated and self-consistently computed. The method adopted is the kinetic theory approximation of plasma physics instead of one-fluid magnetohydrodynamic (MHD) approximation or the Particle-In-Cell (PIC) generally used. Both the ensembles of electrons and protons are described by their velocity distribution function (VDF) that has to satisfy the Vlasov equation derived from the general Liouville theorem for a collisionless plasma. The VDFs are given in terms of the two constants of mechanical motion, the total energy, H, and one canonical momentum, px. The first adiabatic invariant, µ - the magnetic moment which is almost conserved when the Alfven conditions are satisfied, approximates a third constant of motion. I have found a velocity distribution function that describes a plasma moving in the Ox direction with a two-dimensional bulk velocity Vx(y, z) depending both on y and z. The moments of the VDFs of electrons and ions were computed analytically. The self-consistent electromagnetic potentials are found by solving the Maxwell equations and the plasma quasineutrality equation. The partial current densities, jx(y, z), determined by the first order moments of the VDFs were introduced into Ampere's equation in order to compute Ax(y, z), the component of the magnetic vector potential. The charge densities of the component species, qαnα, determined by the zero order moments of the VDFs have been introduced into the quasineutrality equation, α qαnα = 0, from which the distribution of the electric potential, Φ(y, z), is computed. The solutions for the electromagnetic potentials are found numerically. I have obtained a kinetic model that describes a two-dimensional plasma stream whose perpendicular bulk velocity varies (or is sheared) both in the direction normal to the magnetic field (perpendicular shear) and parallel to the magnetic field (parallel shear ). The parallel shear of velocity has never been modeled before using kinetic equations. On the other hand the two dimensional models proposed till now for the dynamics of magnetospheric plasma did not consider differential (or sheared) plasma motion across magnetic field lines. Several kinetic solutions are given for two-dimensional plasma flows and for different values of asymptotic densities, temperatures and bulk velocity. The key-feature of these numerical models is the existence of a parallel component of the electric field, Eparallel. It is shown that the parallel electric field vii is sustained by the parallel shear of the perpendicular plasma velocity. The amplitude of the parallel electric field depends on the value of the magnetic- field-aligned gradient of the perpendicular plasma velocity and also on the relative density and temperature of the moving stream with respect to the background, stagnant plasma. This is a new mechanism to generate parallel electric fields that adds to the ones already described in the literature and that are discussed in part 2 of this Thesis. In the kinetic models presented in the second part I have adopted a set of plasma densities and temperatures typical for the terrestrial magnetopause region. A parallel gradient of the density or electronic pressure enhances the intensity of the parallel electric field. The scale length of the boundary layer of transition from moving to stagnant regime can be of the order of the electron Larmor radius (“electron layer”) or the proton Larmor radius (“proton layer”). The scaling of the boundary layer is determined by the relative orientation of the magnetic field and the plasma bulk velocity. Eparallel is stronger in the case of Parallel Sheared Electron Layer than in the case of Parallel Sheared Proton Layer. The existence of a parallel component of the electric field invalidates the MHD approximation. In the case of the two-dimensional plasma flow studied in this Thesis the MHD convection velocity, UE = E ×B/B2 is not a satisfying approximation of the plasma bulk velocity, V . I illustrate the differences between UE (assigned in MHD approximations to a “frozen-in” motion of B-field lines) and V obtained by the kinetic models described in part 2. It is shown that the “de-freezing” is produced in those regions where a non-vanishing parallel electric field component was determined. The kinetic treatment of the plasma dynamics adopted in this Thesis evidence kinetic effects disregarded in the one-fluid approximations: finite Larmor radius effects that are illustrated in Part I and non-MHD parallel electric fields that are described in Part II. These effects play an important role in the processes taking place at the magnetopause, the interface region between the solar wind and the terrestrial magnetosphere.
5

De l’exosphère à la magnétosphère des objets planétaires faiblement magnétisés : optimisation de modélisations parallélisées pour une application à Ganymède / From exosphere to magnetosphere of planetary objects : optimization of parallelized modelisations for an application to Ganymede

Leclercq, Ludivine 06 October 2015 (has links)
Ganymède, une lune de Jupiter, est le plus grand et le plus massif des satellites de notre système solaire. Cet objet a été observé depuis la Terre, notamment grâce au télescope Hubble (HST), et in situ par la sonde Galileo. Grâce à ces observations, une atmosphère très ténue, ou exosphère,principalement composée d'hydrogène, d'oxygène et d'oxygène moléculaire, a été détectée au voisinage de Ganymède. Ganymède est l'unique lune du système solaire possédant son propre champ magnétique intrinsèque, qui, en interagissant avec le plasma magnétosphérique jovien, génère unemini-magnétosphère. Cette magnétosphère est imbriquée dans celle de Jupiter. C'est le seul cas connu d'interaction entre deux magnétosphères. Galileo est l'une des seules sondes spatiales ayant investigué l'environnement complexe de Ganymède. La prochaine mission spatiale qui étudiera ce satellite estune mission européenne de l'ESA : JUICE (JUpiter ICy moon Exploration). Dans le cadre de cette mission, et dans un but de mieux connaître ce satellite, mon travail de thèse a consisté à modéliser l'environnement global neutre et ionisé de Ganymède.La première partie de mon travail de thèse a été consacrée à l'étude de l'exosphère de Ganymède à l'aide d'un modèle 3D Monte-Carlo. J'ai parallélisé ce modèle afin d'améliorer ses performances et d'enrichir la physique décrite par le modèle. Les résultats sont comparés à ceux d'autres modèles, ainsi que les observations effectuées par le HST et Galileo. L'environnement ionisé, en particulier la magnétosphère de Ganymède, a été ensuite étudié à l'aide d'un modèle hybride parallèle 3D, notamment en se plaçant dans les conditions d'observations de Ganymède par Galileo. Les résultats sont globalement cohérents avec les observations, et concordent avec ceux d'autres modèles, maismontrent néanmoins une nécessité d'améliorer significativement la résolution spatiale du modèle. De ce fait, une partie significative de mon travail de thèse a été dédiée au développement et à l'implémentation d'une approche multi-grilles au sein du modèle hybride, pour améliorer la résolution spatiale d'un facteur 2 dans le voisinage proche du satellite. Enfin, les résultats obtenus avec ce modèle optimisé sont confrontés aux observations de Galileo. / Jupiter’s moon Ganymede is the biggest and most massive satellite of our solar system. Thisobject has been observed from the Earth, with the Hubble Space Telescope (HST), and through in situ measurements by Galileo spacecraft. Thanks to these observations, a very tenuous atmosphere, or exosphere, has been detected at Ganymede. It is mainly composed of atomic hydrogen, atomic oxygen, and molecular oxygen. Ganymede is the only moon of the solar system to have its own intrinsic magnetic field, which generates a minimagnetosphere interacting with the magnetospheric jovian plasma. This magnetosphere is embedded in the jovian magnetosphere. It is the only known case of interaction between two magnetospheres. Galileo is the only mission that has investigated the complex ionized environment of Ganymede. The next space mission dedicated to investigate the Jovian magnetosphere and its galilean satellite is an European mission from ESA : JUICE (Jupiter ICy moons Explorer). In the frame of this mission, and to prepare future observations at Ganymede, my thesis work has consisted in modeling the global neutral and ionized environment of Ganymede. The first part of my thesis work has been dedicated to the study of Ganymede’s exosphere with a 3D Monte-Carlo model. I have parallelized this model to improve its performance and to enrich the physics described by the model. Results have been compared to those of other models, and to HST and Galileo observations. The ionized environment, in particular the magnetosphere of Ganymede, has then been studied with a 3D parallel hybrid model,considering the observation conditions of Galileo. Results are globally consistent with the observations and with other models, but show the necessity to significantly improve the spatial resolution. Therefore, a significant part of my work has been dedicated to the development of a multi-grid approach in the hybrid model, to divide by 2 the spatial resolution at the vicinity of Ganymede. Finally, results obtained with the optimized model are compared to Galileo observations.
6

Un modèle à criticalité auto-régulée de la magnétosphère terrestre

Vallières-Nollet, Michel-André January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
7

Un modèle à criticalité auto-régulée de la magnétosphère terrestre

Vallières-Nollet, Michel-André January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
8

Modélisation de la dynamique couplée des plasmas magnétosphérique et ionosphérique.

Hurtaud., Yannis 19 October 2007 (has links) (PDF)
L'interaction du vent solaire avec le champ magnétique terrestre crée dans la magnétosphère un champ électrique qui induit un déplacement (ou convection) du plasma de la queue magnétosphérique vers la Terre. Au cours de ce mouvement les particules magnétosph ériques interagissent avec la composante ionisée de la haute atmosphère de la Terre qu'on appelle ionosphère. Elles modifient les propriétés électriques du milieu conducteur ionosphérique, en particulier la distribution du champ électrique responsable de la convection magnétosphérique. Le Centre d'Etude Spatiale des Rayonnements dispose d'un modèle numérique décrivant de manière autocohérente la convection magnétosphérique et ses couplages avec l'ionosph` ere. Nous avons modifié ce code afin : <br />1) d'y inclure les effets des asymétries entre les deux hémisphères Nord et Sud de la Terre liées à l'éclairement solaire <br />2) de remplacer le modèle de champ magnétique dipolaire utilisé jusqu'à présent par un modèle plus proche des observations. Les premiers résultats obtenus montrent que les asymétries inter-hémisphériques ont un effet considérable sur la dynamique du plasma ionosphérique mais que la magnétosphère y est relativement insensible. Ils montrent également qu'une topologie de champ magnétique différente de celle d'un dipôle est nécessaire pour reproduire les observations.
9

Simulations de l'interaction du vent solaire avec des magnétosphères planétaires : de Mercure à Uranus, le rôle de la rotation planétaire / Simulations of the interaction of the solar wind with planetary magnetospheres : from Mercury to Uranus, the part of the planetary rotation

Griton, Léa 10 September 2018 (has links)
La thèse porte sur le rôle de la rotation planétaire dans la structure globale de l'interaction vent solaire/magnétosphère à partir de simulations magnétohydrodynamiques (MHD). Les magnétosphères planétaires du système solaire présentent une incroyable diversité, et notamment dans leurs configurations respectives de l'inclinaison de leur axe magnétique par rapport à leur axe de rotation. La durée des périodes de rotation par rapport au temps de relaxation de chaque magnétosphère diffère aussi d'une planète à l'autre. On distingue ainsi les rotateurs lents (Mercure et la Terre), pour lesquels le temps de relaxation est plus court que la période de rotation, des rotateurs rapides (Jupiter, Saturne, Uranus et Neptune). Dans le cas du rotateur lent Mercure, on s'intéresse à l'influence des paramètres du vent solaire sur la structure globale du champ magnétique et de l'écoulement. En appui à la mission spatiale BepiColombo, nous présentons des simulations effectuées pour deux modèles différents de champ magnétique herméen. Nous détaillons le rôle des fronts d'onde MHD stationnaires, en particulier les fronts stationnaires de mode lent dans la magnétogaine. Saturne présente la particularité d'avoir un axe magnétique parfaitement aligné avec son axe de rotation. C'est donc un cas de rotateur rapide stationnaire, qui nous permet d'étudier la structure globale du champ magnétique et de l'écoulement pour différentes orientations de l'IMF, mais aussi pour différentes vitesses de rotation de la planète. Enfin, le cas d'une configuration quelconque, avec un grand angle entre l'axe magnétique et l'axe de rotation planétaire, est étudié en présence d'un vent solaire magnétisé en s'inspirant de la configuration d'Uranus au solstice et à l'équinoxe. Dans la configuration « solstice », c'est à dire lorsque l'axe de rotation pointe vers le Soleil, on montre qu'une structure de nature alfvénique se développe en hélice dans la queue de la magnétosphère, et que les zones de reconnexion entre le champ magnétique planétaire et l'IMF, qui forment aussi une double hélice, ralentissent la progression de la structure alfvénique. A l'équinoxe, lorsque l'axe de rotation est toujours dans le plan de l’écliptique mais perpendiculaire à la direction Soleil-Uranus, la structure en hélice disparaît. / The topic of the thesis is the part of planetary rotation in the global structure of the solar wind interaction with planetary magnetospheres using MHD simulations. We discuss the distinction between slow and fast rotators from a MHD point of view. In the case of a non-rotating magnetosphere (as is the one of Mercury), the part of standing MHD modes is studied, along with a method to identify them in simulations. A fast-rotating but stationary magnetosphere (inspired by the case of Saturn) is presented in details and provides a good test to validate the new version of the AMRVAC code allowing for any configuration regarding the respective directions of the planetary spin axis, planetary magnetic axis, solar wind inflow direction, and IMF orientation. Finally, a random configuration, with a large angle between the planetary spin and magnetic axis, is analyzed for the first time in presence of a magnetized solar wind, using configurations inspired from the planet Uranus at solstice and equinox.
10

Interaction du vent solaire avec les planètes non magnétisées Mars et Vénus

Ferrier, Claire 23 July 2009 (has links) (PDF)
Les corps planétaires sans champ magnétique intrinsèque, tels que Mars et Vénus, mais possédant une atmosphère, possèdent une queue magnétosphérique comme celle observée à l'arrière des comètes. Ces queues magnétosphériques sont le résultat de l'interaction directe entre le vent solaire (plasma constitué d'ions et d'électrons éjectés par le Soleil) et l'ionosphère de ces planètes. Une étude comparative de ces deux planètes est aujourd'hui possible. En effet, ASPERA-3 à bord de Mars Express (MEX) est actuellement en orbite autour de Mars et ASPERA-4, réplique d'ASPERA-3, à bord de Venus Express, en orbite autour de Vénus depuis Avril 2006. Ces expériences, construites en partenariat international avec une participation importante du CESR, donnent la possibilité d'étudier et de comparer, au moyen d'une instrumentation identique, l'interaction des deux planètes avec le vent solaire. Il est maintenant admis qu'en l'absence d'obstacle magnétique efficace, comme c'est le cas sur la Terre, protégée par sa magnétosphère, les atmosphères des planètes telles que Mars et Vénus sont soumises à une érosion intense au contact du vent solaire. Les modèles prédisent un effet cumulé très important à l'échelle de milliards d'années, potentiellement capable de dissiper une atmosphère primitive dense, nécessaire au maintient de l'eau sous forme liquide. Cependant, les mesures récentes de MEX montrent que si les échappements de l'atmosphère résultant de cette interaction sont importants, ils ne peuvent probablement pas expliquer la disparition des océans primitifs de Mars. A I'origine, Vénus devait également être recouverte d'eau, mais cette dernière s'est évaporée et le peu qu'il en reste (sous forme de vapeur) continue de s'en échapper comme en témoignent les taux d'échappement actuels d'hydrogène et d'oxygène calculés à partir des mesures de VEX. Cette thématique, qui nécessite d'aborder les planètes en tant que systèmes, constitués d'enveloppes en interaction mutuelle, avec à leur sommet le vent solaire, est fondamentale pour comprendre l'évolution des planètes tellurique en référence à la Terre. 1) Le problème “planétologique“ Il consiste à étudier de façon spécifique l'échappement des ions planétaires de Mars et Vénus. La résolution de ce problème passe par l'étude de la structure de cette interaction du vent solaire avec la planète ou plus précisément du couplage entre un vent de plasma rapide, sans collision, et un gaz neutre via des processus d'ionisation. En effet, cette interaction conduit à la formation d'un sillage rempli d'ions d'origine atmosphérique. La comparaison des environnements ionisés des deux planètes a révélé des similitudes et des différences dans les diverses régions plasma qui les entourent. Le calcul des taux d'échappement – ici échappement causé par l'interaction avec le vent solaire – permet de quantifier la perte atmosphérique et de mieux comprendre le rôle de ce type d'échappement dans la disparition de l'eau sur Mars et Vénus. 2) Le problème “physique“ Il consiste à étudier les mécanismes physiques responsables de l'échappement du matériel planétaire. L'étude de l'accélération des ions en fonction de différentes régions magnétosphériques révèle des différences à l'origine de la répartition spatiale et énergétique des différents ions, observés dans les queues de Mars et Vénus. Les mécanismes d'accélération agissant dans la région centrale de la queue, la plasma sheet sont dus à la forte tension magnétique jxB et à un champ électrique de polarisation. La seconde région, plus externe est le siège d'une accélération par le champ électrique interplanétaire et à un champ électrique de séparation de charge

Page generated in 0.4215 seconds