Spelling suggestions: "subject:"1magnesium"" "subject:"dimagnesium""
111 |
Resonance capture of protons by Mg²⁴ and Mg²⁵ /Taylor, Warren Egbert January 1952 (has links)
No description available.
|
112 |
Inelastic scattering of 6.2 Mev protons by magnesium /Lackner, Henry Allyn January 1958 (has links)
No description available.
|
113 |
Cation uptake by mitochondria and the role of magnesium /Wehrle, Janna Page January 1975 (has links)
No description available.
|
114 |
Magnetic properties of crystalline Mg:Mn /Garvin, Richard Wesley January 1978 (has links)
No description available.
|
115 |
Electrochemical determination of thermodynamic properties of magnesium cell electrolyte : the system MgCl2-NaCl-Cacl2Karakaya, İshak. January 1985 (has links)
No description available.
|
116 |
UNDERSTANDING SOURCES OF VARIABILITY AND QUALITY IN MODERN SOLID ORAL DOSAGE FORMSDaniel F DeNeve (17874515) 09 March 2024 (has links)
<p dir="ltr">Pharmaceutical manufacturing of solid oral dosage forms is undergoing a significant evolution with the introduction of continuous manufacturing and advanced manufacturing technologies such as three-dimensional printing (3DP). Pharmaceutical manufacturing requires new approaches to ensure the quality of excipients and new ways to design and formulate advanced solid oral dosage forms. One example of a raw material that has quality issues is magnesium stearate, the most commonly used excipient in solid oral dosage forms. The complicated physicochemical nature of magnesium stearate introduces variability to the performance of tablet lubrication and dissolution. The lack of understanding on this variability can cause product loss or failure of quality assessments. In addition, new manufacturing methods such as 3DP binder-jet printing of pharmaceuticals have poorly understood quality challenges that need to be explored.</p><p dir="ltr">The specific aims of this project are as follows: [1] To determine the susceptibility of the disordered form to form interconversion and disproportionation when used to make a tablet. The comparison of lab synthesized samples to the more relevant forms that appear in commercial products such as the monohydrate and dihydrate forms of magnesium stearate are included. 13C labeled magnesium stearate of all forms will be prepared to determine which causes the greatest extent of disproportionation.</p><p dir="ltr">[2] To determine if a newly investigated form of magnesium stearate, named the disordered form, is viable for pharmaceutical use. The disordered form must minimize risk impacting dissolution while being an effective lubricant, thereby reducing batch and continuous manufacturing failures.</p><p dir="ltr">[3] To evaluate how 3DP printed tablet manufacturing methods impact critical quality attributes. This work will identify the importance of attributes such as weight; binder composition; excipients; compatible drugs; software; hardware change as a function of raw material attributes (API, powder character, and binder) and critical process parameters.</p>
|
117 |
Characterization of the Solidification Behavior and Resultant Microstructures of Magnesium-Aluminum AlloysBarber, Lee P 23 December 2004 (has links)
"Research and development of magnesium casting alloys depends largely on the metallurgist’s understanding and ability to control the microstructure of the as-cast part. Currently few sources of magnesium solidification information and as-cast microstructures exist. Therefore, the goal of this research is to increase the general knowledge base of magnesium solidification behavior and to characterize the resultant microstructures. Equipment has been developed and constructed to study the solidification behavior of magnesium-aluminum casting alloys via non-equilibrium thermal analysis and continuous torque dendrite coherency measurements. These analyses have been performed on six magnesium-aluminum alloys, including industry dominant alloys such as AM60 and AZ91E, and experimental alloys which show commercial potential such as AXJ530. The resultant microstructures have been characterized for general microstructure trends and the various phases present were analyzed using optical and scanning electron microscopy, as well as energy dispersive x-ray spectroscopy. The measurements were performed using a cooling rate on the order of 1-2°C/s, and results of these analyses show that in general, magnesium-aluminum casting alloys have relatively large solidification ranges, non-dendritic microstructures, and coherency points that are similar to those of aluminum casting alloys. These results should prove useful for research directed towards development of new magnesium alloys that are targeted for specific applications, as well as for optimizing casting procedures for Mg-Al alloys to obtain defect free cast structures."
|
118 |
Fundamental study of immiscible Ti-Mg system : ball milling experiments and ab initio modellingPhasha, Maje Jacob January 2013 (has links)
Thesis (Ph. D. (Physics)) -- University of Limpopo, 2013. / A combination of ball milling experiments and ab initio calculations in this study successfully yielded results that shed light into understanding the fundamental basis for immiscibility and the concept of mechanical alloying in Ti-Mg system. In addition, the conditions for achieving extended solid solubility in elements that usually do not dissolve in each other under thermodynamic equilibrium conditions have been predicted using ultrasoft (US) and norm-conserving (NC) pseudopotentials. Hydostatic pressures required to stabilize ordered phases were determined. Our new systematic representation of martensitic transformation (MT) paths as a result of dislocation necessary to induce α→FCC, α→BCC and α→ω phase transitions led to, for the first time, a direct determination of CRSS and tensile strength for Ti and Mg HCP metals. Furthermore, a new ω phase which is less stable than α phase at 0 GPa is proposed. Based on this phase, α→ω deformation path which yielded the onset of uniaxial transition pressure of 4.167 GPa is reported.
Attempts of synthesizing Ti-Mg solid solutions by means of Simoloyer high energy ball mill were not successful; however, nanocrystalline Mg-TiH2-x composites were instead formed. These results were attributed to quick formation of metastable Ti hydrides or cold welding at early stages of BM prior to alloying, thus serving as possible obstacles to forming such solid solutions. The deformed Ti crystals adsorbed H+ from the stearic acid leading to formation of metastable orthorhombic TiH2-x phase which later transformed to a tetragonal TiH2-x or even cubic TiH2 when stoichiometric amount of H2 had been adsorbed. Although the yield was significantly lower, the product of milling a mixture of coarse Mg and fine Ti particles was comprised of Ti particles adhering around ductile Mg particles in a core shell manner. The adhesion of the fine hard titanium particles on the surface of the large ductile magnesium particles impeded the further plastic deformation of the titanium particles, thus suppressing the formation of the faults necessary for mechanical alloying.
Nanocrystalline Ti powder of about 40 nm was produced by 30h ball milling. During BM of Ti powder, solid-state transformation from HCP to FCC occurred in the presence of PCA with lattice parameters of 4.242 and 4.240 Å after 24 and 30 h, respectively,
v
due to protonation. When Ti powder was milled in the absence of PCA, no phase transformation was observed for both uninterrupted and interrupted milling cycles. In addition, nanocrystalline Mg powder with crystallite size varying between 60 and below 40 nm was produced by ball milling. However, no solid-state transformation took place even if the powder was milled for 90 h. Therefore, we evidently report for the first time that the interstitial H+ is the driving force for α → FCC phase transformation in ball milled Ti powder.
Our theoretical results predicted the ω phase to be the ground-state structure of Ti at 0K and P=0 GPa, in support of other previously reported calculations. We noticed that the stability of the α phase was surpassed by that of the FCC lattice at ~ 100 GPa, corresponding with sudden sharp rise in c/a ratio, hence attributed to α → FCC phase transition. Similar results were obtained for Mg at 50 GPa, although in this case the crossing of lattice energies coincided with minimum c/a. However, using our proposed HCP→BCC MT path mechanism for Mg, it is evident that the minimum c/a at 50 GPa corresponds to a change in the preferred deformation slip from basal (below 10 GPa) to prismatic rather than phase transition. Nonetheless, the proposed MT model predicts that both elemental Ti and Mg prefer to deform via prismatic slip as indicated by lower shear stress as well as CRSS values compared to those calculated for basal slip.
Theoretical findings from ab initio calculations on hypothetical ordered Ti-Mg phases indicated absence of intermetallic phases at equilibrium conditions, in agreement with experimental data. However, the formation becomes possible at 80 GPa and above with respect to c/a ratio but requires at least 200 GPa with respect to stable lattices. Using calculated heats of formation, elasticity and DOS, it has been possible to show that L12 TiMg3 could not form even at high pressure as 250 GPa. Nonetheless, both approaches indicate that forming an intermetallic compound between Ti and Mg requires a crystal structure change, α→FCC for Ti and HCP→BCC for Mg.
Proposed DFT-based solid solution model for predicting phase stability and elastic properties of binary random alloys, with Mg-Li system serving as a test case, successfully yielded reliable results comparable to experimental data. This method was successfully applied to study an immiscible Ti-Mg system and the solubility limit
vi
was for the first time theoretically established. Based on formation energy of Ti-Mg solid solutions, our calculations predicted for the first time that the solubility of up to 60 and 100 at.% Mg into Ti with the use of USP and NCP, respectively, to be thermodynamically favourable with necessary lattice kinetics being the main challenge. Nonetheless, NCP proved to be reliable in predicting structural and elastic properties of disordered alloys.
|
119 |
A SEARCH FOR CHANGES IN THE BAND STRUCTURE OF EXTREMELY STRAIN-FREE MAGNESIUM-CADMIUM CRYSTALS AS A FUNCTION OF ALLOYING, IN THE DILUTE LIMIT (DE HAAS-VAN ALPHEN, FERMI SURFACE).KUPFER, JOHN CARLTON. January 1985 (has links)
We report here a study of a specific doublet of de Haas-van Alphen frequencies in pure Mg and very dilute Mg(Cd) alloys with the magnetic field aligned with the c-axis. The work involved three stages. First, the use of extremely strain-free crystals, temperatures down to 40 millidegree Kelvin, large amplitude modulation, and the fast Fourier transform allowed the components of this doublet to be well resolved. This resolution allowed measurement of the changes in the cross-sectional area as a function of magnetic field orientation to verify the assignment of this doublet to the cap and monster arm junction at the top of the Brillouin zone. Third, with the magnetic field aligned with the c-axis, the splitting of this doublet offered a direct and sensitive indication of any symmetry breaking changes in the 0001 Fourier component of the ionic lattice potential in Mg upon the introduction of Cd. C. B. Friedberg's analysis of his electron interference lineshape data from the quantum interferometer in Mg had indicated that the energy of this band gap should increase by 40% with the introduction of 15 ppm Cd. Our data indicate that any change in the energy of the band gap must be at least three orders of magnitude smaller than that indicated by Friedberg. Our data are, in fact, consistent with there being no changes in the electronic band structure or the Fermi surface of Mg(Cd) alloys (with up to 0.02% (At) Cd), from that of pure Mg.
|
120 |
Serrated flow and enhanced ductility in coarse-grained Al-Mg alloysSamuel, Ehab. January 2008 (has links)
Aluminum 5XXX alloys are of industrial importance and interest as they combine a wide range of desirable strength, forming and welding characteristics with a high resistance to corrosion. The presence of Mg in these alloys ensures favorable mechanical properties. However, the room temperature stretching performance of these alloys is limited. Moreover, Al-Mg alloys are known for being susceptible to the Portevin-LeChatelier effect when deformed at room temperature. Nevertheless, improvements in ductility can be achieved through warm forming, especially when the ductility approaches superplastic levels. / The aim of this study was to test for enhanced ductility in three coarse-grained Al-Mg alloys namely, super-pure Al-3%Mg and Al-5%Mg, and commercial AA 5056 alloy. The temperature-dependent flow stress and rate sensitivity behavior of these alloys was investigated by means of tensile testing using ASTM E8M-04 standard samples. Samples were deformed to 10% strain to allow enough deformation to occur such that serrations in the dynamic strain aging (DSA) temperature/strain rate range would be rendered visible on a stress-strain curve. Using this information, the regions of negative and higher-than-normal strain rate sensitivity ('m') were plotted and tensile tests to failure were performed in the vicinity of maximum 'm'. ASTM E2448-06 standard samples for superplasticity tensile testing were used in this case. / A maximum ductility of 170% was recorded with these samples and this was found to increase to nearly 300% when the gage length was shortened. It was observed that the DSA serrations were more prominent at lower strain rates, higher temperatures and higher Mg contents. The results of this study show clearly that if the rate sensitivity is high enough, then enhanced ductility in coarse-grained materials is possible at temperatures well below the maximum test temperature.
|
Page generated in 0.041 seconds