Spelling suggestions: "subject:"1magnesium"" "subject:"dimagnesium""
321 |
Measurements of the optical constants of magnesium oxide and calcium tungstate in the spectral region between 10 cm⁻¹ and 100 cm⁻¹ at 300̊K and 90̊K /Rowntree, Robert Fredric January 1963 (has links)
No description available.
|
322 |
Sintering and reactions MgO and Cr₂O₃ /Hench, Larry L. January 1964 (has links)
No description available.
|
323 |
Aging Characteristics of an Aluminum-4.5% Copper-1.5% Magnesium AlloySulouff, Robert Earl 01 January 1977 (has links) (PDF)
The effects of quenching conditions, single-step and two-step aging treatments on the tensile properties of an AL-4.5%Cu-1.5%Mg alloy has been investigated. Results indicate that two distinctly different precipitates of GPB and S' form during aging. Single-step aging at 140°C , 160°C and 190°C indicated that 24 hours at 160°C produced optimum strength (67 ksi UTS). Two-step aging for 3 days at 140°C plus 190°C resulted in a slight increase in strength over single step aging at 190°C. Slow (oil) quenching as well as direct quenching improved the tensile properties when aged at 190°C. Reversion occurred slowly over the temperature range 250°C to 350°C.
|
324 |
ELECTROCHEMICAL POLARIZATION BEHAVIOUR OF Mg-Al ALLOYS IN NEAR-NEUTRAL SOLUTIONSHu, Yaning 10 1900 (has links)
<p>A study has been conducted in mildly aggressive saline solutions to indentify subtle yet important difference in the anodic and cathodic process of three Mg-Al alloys, AZ31B, AM30 and AM60B in a partially passive state and a localized corrosion state. The influence of metallurgical factors and environment variables on the corrosion resistance and surface film breakdown process has been investigated using potentiodynamic and potentiostatic tests combined with optical microscopy.</p> <p>All three Mg-Al alloys corroded in a partially protected state under open circuit conditions in the test solution and the surface film formed on each exhibited a similar breakdown potential. This indicates that metallurgical factors such as alloying additions and the presence of the β-phase (Mg<sub>17</sub>Al<sub>12</sub>) did not significantly influence the surface film breakdown process. AM60B exhibited improved corrosion resistance at potentials below the breakdown potential due to the formation of a more protective surface film. The β- phase, however, did not strongly influence either the anodic process at potentials above the breakdown potential or the cathodic process. It was determined that increasing the alloy Al content increases the corrosion potential of Mg-Al alloys, but also increases the risk of localized corrosion. The similar anodic and cathodic polarization behaviour exhibited by AZ31B and AM30 indicates that a 1 wt % Zn alloying addition does not strongly influence the corrosion resistance of these alloys. The die-cast skin of AM60B exhibited better corrosion resistance than the interior at potentials below the breakdown potential due to the higher fraction of Al-rich β-phase, which improved the protective ability of the surface film. The semi-continuous β-phase network did not provide a strong micro-galvanic activity to drive anodic dissolution of the α-phase, therefore, did not significantly affect the corrosion resistance above the breakdown potential. The crystallographic texture exhibited by the extruded AM30 did not strongly affect the short-term and long-term corrosion resistance. AM30 showed a relatively steady passive state during long time exposures in a room temperature 0.01 M NaCl solution.</p> / Master of Science (MSc)
|
325 |
MAGNESIUM DIBORIDE JOSEPHSON JUNCTIONS FOR SUPERCONDUCTING DEVICES AND CIRCUITSCunnane, Daniel January 2013 (has links)
Superconductivity in magnesium diboride (MgB2) was first discovered in 2001. It is unique in that it has two superconducting gaps. The transition temperature of 39 K exceeded the maximum transition temperature thought to be possible through phonon mediated superconductivity. Through the study of MgB2, a general paradigm is being formulated to describe multi-gap superconductors. The paradigm includes inter-band and intra-band scattering between the gaps which can cause a smearing of the gap parameter over a distribution instead of a single value. Although each gap is individually thought to be well described by the BCS theory, the interaction between the two gaps causes complications in describing the overall superconducting properties of MgB2. The focus of this work was to lay the groundwork for an MgB2-based Josephson junction technology. This includes improving on a previously established baseline for all-MgB2 Josephson junctions, utilizing the Josephson Effect to experimentally verify a model pertaining to the two-gap nature of MgB2, specifically the magnetic penetration depth, and designing, fabricating, and testing multi-junction devices and circuits. The experiments in this work included fabrication of Josephson Junctions, DC superconducting quantum interference devices (SQUIDs), Josephson junction arrays, and a rapid single flux quantum (RSFQ) circuit. The junctions were all made utilizing the hybrid physical-chemical vapor deposition method, with an MgO sputtered barrier. The current process consists of three superconducting layers which are patterned using standard UV photolithography and etched with Ar ion milling. There were SQUIDS made with sensitivity to magnetic fields parallel to the film surface, which were used to measure the inductance of MgB2 microstrips. This inductance was used in design of more complicated devices as well as in calculating the magnetic penetration depth of MgB2, found to be about 40 nm at low temperature, in good agreement with a previously published theoretical model. Planar-type DC SQUIDs were also made to present the feasibility of the technology for application purposes. The large voltage modulation of over 500 μV at 15 K for these devices along with operation up to 37 K shows that MgB2 is a potential replacement for low temperature devices. The junction series arrays were fabricated with 100 junctions of equal size to present the ever-increasing robustness of the technology. The devices served well to measure the large property spread associated with these junctions and have been well established as a diagnostic tool for improving this spread. The culmination of this work was a basic RSFQ toggle flip flop circuit. A DC measurement of these circuits yielded digital operation up to 180 GHz at low temperature and about 63 GHz at 20 K. This is not yet near the potential limit of MgB2 established by the value of the superconducting gap parameters, but a huge success in showing that MgB2 is a viable option for pursuing superconducting digital electronics suitable for low power, cryogen-free operation. / Physics
|
326 |
Building A Magnesium Ion Trap For Quantum ComputationZhou, Jiajia 08 1900 (has links)
<P> Trapped ions are one of the best candidate systems to realize quantum computation. In our laboratory, we are trying to implement quantum computing and information processing: two hyperfine ground-states of magnesium-25 ions will serve as the two-level system to store quantum information. The ions are confined in a linear radio-frequency trap under ultra-high vacuum conditions and will be cooled down to their motional ground-states. By illuminating the ions with frequency-stabilized lasers we will be able to initialize, manipulate, and read out their internal electronic quantum states in a well-controlled way and with high fidelity. In addition, the ions can be made to interact with each other by coupling their internal electronic states to a collective vibrational mode of motion along the trap axis. In this thesis, the focus will be on the process of building a trapped-magnesium-ion quantum information processor. </p> / Thesis / Master of Science (MSc)
|
327 |
Microstructural Effects on the Formability of Rolled and Extruded Magnesium SheetDunnett, Kendal 02 1900 (has links)
The automotive industry has become a major user of magnesium components. However, use of magnesium sheet products is quite limited, due to difficulties in producing cost effective components. Any sheet currently produced is formed at elevated temperatures, making magnesium parts relatively expensive. Knowledge of the microstructural effects on magnesium formability will help reduce the cost of these products. In this thesis, the microstructural factors that affect the formability of rolled and extruded magnesium sheet were compared. It was found that the degree of dynamic
recrystallization was the factor that controlled elongation. Dynamic recrystallization produced a finer grain size, which resulted in a transition in deformation mechanism from dislocation slip to grain boundary sliding. Digital image correlation was used to study local stresses during tensile
deformation, and to determine if magnesium satisfies Considere's criterion before failure. The results indicated that local stresses developed during deformation satisfied Considere's criterion, although the global strains were lower than the theoretical predictions. / Thesis / Master of Applied Science (MASc)
|
328 |
Corrosion Fatigue of Friction Stir Welded Magnesium Alloy AZ31B: A Comparative StudyTapp, Daniel C. January 2017 (has links)
Load controlled cyclic fatigue testing was conducted on base metal (BM) and friction stir welded (FSW) magnesium (Mg) alloy AZ31B compact tension (CT) specimens in laboratory air and a 0.05 wt. % NaCl fog environment in efforts to delineate the effects of salt fog and stir welding on fatigue performance under tension-tension loading conditions. FSW beads were produced on single piece AZ31B sheet product, simulating a pristine friction stir butt weld. Optical and electron microscopy, as well as X-ray diffraction was employed to observe the features and characteristics of fracture surfaces. The resulting stress vs. number of cycles to failure (S-N) curves demonstrated a reduction in fatigue life in a salt fog environment and an increase in fatigue life for FSW specimens compared to equivalently loaded BM specimens. Tensile frame displacement data indicated that the salt fog environment had an immediate effect on the BM samples, with an increased displacement required to meet the load control criteria. Fatigue cracks that propagated in CT samples that were notched in the direction of FSW tool travel consistently propagated towards the retreating side (RS) of the stir zone. / Thesis / Master of Applied Science (MASc)
|
329 |
Magnesium vapour interactions with molten pig ironIrons, Gordon A., 1950- January 1975 (has links)
No description available.
|
330 |
Low temperature modelling of volatile additions in ironmakingCameron, Ian A. (Ian Archibald) January 1982 (has links)
No description available.
|
Page generated in 0.0484 seconds