• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Uncovering Shocking Mysteries Buried in the Ejecta of Classical Novae and Magnetars

Babul, Aliya Nur Virji January 2022 (has links)
This dissertation uses shocks to explain both the prevalence of radio synchroton emission and dust formation in classical novae, as well as the origin of fast radio bursts. First, we examine the radio lightcurves of nova V809 Cep and find that the peak brightness temperature exceeded 10⁵𝘒, an order of magnitude above what is expected for thermal emission. We argue that the brightness temperature is the result of synchrotron emission due to internal shocks within the ejecta. We then examine the radio lightcurves of seven novae with radio evidence for shocks (QU Vul, V1723 Aql, V5668 Sgr, V809 Cep, V357 Mus, V1324 Sco, PGIR20fbf) and IR/optical evidence for dust formation. We demonstrate that dust formation generally precedes the rise of radio non-thermal emission, and present evidence to suggest that shocks occur prior to the onset of dust formation but that the radio shock emission is initially being absorbed by a layer of photo-ionized gas ahead of the shock. We model the optical depth of the photo-ionized gas to demonstrate that the time required for the photo-ionized gas to become optically thin to radio frequencies can be longer than the time required for dust nucleation; thus, dust appears to form before the shock emission is visible. We further demonstrate that the radio spectral evolution in novae with no evidence for dust formation is markedly different from novae with evidence for shocks, suggesting that in novae without velocity or distance estimates, the radio spectral evolution could be used to constrain the presence of shocks. Finally, we demonstrate that novae with evidence for dust absorption are preferentially inclined edge, on suggesting that both shocks and dust form in the equatorial plane. Since internal shocks in nova ejecta are thought to lead to dust formation, localizing both phenomenon to the equatorial plane strengthens the connection between the two phenomena. We then use Particle-In-Cell (PIC) simulations to explore the synchroton maser instability as a potential mechanism for the formation of Fast Radio Bursts. Electromagnetic precursor waves generated by the synchrotron maser instability at relativistic magnetized shocks have been recently invoked to explain the coherent radio emission of Fast Radio Bursts. By means of two-dimensional particle-in-cell simulations, we explore the properties of the precursor waves in relativistic electron-positron perpendicular shocks as a function of the pre-shock magnetization σ ≳1 (i.e., the ratio of incoming Poynting flux to particle energy flux) and thermal spread Δᵧ ≡ 𝑘𝑇/𝑚𝑐² = 10⁻⁵−10⁻¹. We measure the fraction 𝑓𝜉 of total incoming energy that is converted into precursor waves, as computed in the post-shock frame. At fixed magnetization, we find that 𝑓𝜉 is nearly independent of temperature as long as Δᵧ ≲ 10¹·⁵ (with only a modest decrease of a factor of three from Δᵧ = 10⁻⁵ to Δᵧ = 10¹·⁵, but it drops by nearly two orders of magnitude for Δᵧ ≳ 10⁻¹. For our reference σ = 1, the power spectrum of precursor waves is relatively broad (fractional width ∼ 1−3) for cold temperatures, whereas it shows pronounced line-like features with fractional width ∼ 0.2 for 10⁻³ ≲ Δᵧ ≲ 10¹·⁵. For σ ≳ 1, the precursor waves are beamed within an angle ≃ σ -⁻¹/² from the shock normal (as measured in the post-shock frame), as required so they can outrun the shock. Our results can provide physically-grounded inputs for FRB emission models based on maser emission from relativistic shocks.
12

Spin polarization effects in neutron stars

Riz, Luca 09 March 2020 (has links)
This thesis is concerned with effects of spin polarization in neutron stars. In particular, we focus on static and dynamic properties of dense neutron matter. We use two different kind of potential to perform our studies: the phenomenological two-body Argonne V$8$' potential plus the three-body Urbana IX force and a modern local version of chiral effective potential up to next-to-next-to-leading order (N$2$LO). Estimates are calculated for the neutrino mean free path in partially spin-polarized neutron matter starting from Quantum Monte Carlo (QMC) simulations and using mean-field approaches to compute the response function in the longitudinal and transverse channel. We also compute magnetic susceptibility of dense neutron matter from accurate QMC calculations of partially spin-polarized systems. Twist-averaged boundary conditions (TABC) have been implemented to reduce finite-size effects. In the results, we also account for the theoretical uncertainty coming from the chiral expansion scheme. These results may play a role in studying high-energy phenomena such as neutron star mergers and supernova explosions, although they have been computed only at T$=0$ K.
13

Statistické zpracování družicových dat gama záblesků / Statistical analysis of the gamma-ray bursts satellite data

Bystřický, Pavel January 2011 (has links)
In this thesis the Gamma-Ray Bursts (GRBs) are studied, the brightest explosions in the universe. GRBs have been observed since year 1967, but there are several unsolved problems. In the first chapter there is an introduction to the issue of GRBs, and the history of observations are briefly described. The Fermi satellite, the latest satellite devoted to gamma-ray burst observations is described in chapter two. Characteristics of the Fermi instruments are also described. The observed data of GRBs are characterized in the third chapter. The distribution of GRB durations, distances, and spectral hardnesses are described. The characteristics of long and short GRBs (distance, isotropy of distribution, metalicity dependence, isotropic energy) are described. A chance of the appearance of a GRB in the Milky Way is discussed. New Fermi observations are described too. Fourth chapter is about models of GRBs. The fireball and canonball models are described. Fifth chapter is focused on the exposure function of CGRO-BATSE, Fermi-GBM, Swift. I have created the exposure function for GBM on Fermi satellite. It is quite difficult, and I have assumed some simplified hypotheses. Information of the satellite's position, position of detectors on the Fermi satellite, have been found on the Fermi web pages and in the article...
14

Population Synthesis of isolated Neutron Stars

Gullón Juanes, Miguel 18 December 2015 (has links)
Neutron Stars present a wide variety from the observational point of view. The advent of new and powerful detectors and instruments has opened a new era where the classical picture of neutrons stars seen as radio-pulsars has been modified with new classes such as magnetars, X-ray Isolated Neutron Stars (XINSs) or Central Compact Objects (CCOs) in Supernova Remnants . In addition to the more than 2500 sources detected in the radio band, more than two hundred have also been detected as X-ray and gamma-ray sources. This number is expected to increase in the near future. Despite this apparent diversity, some studies demand a theory able to explain the different classes in terms of the same physical scenario (Kaspi, 2010), in which the evolution of the magnetic field appears to play an important role (Viganò et al., 2013). The Population Synthesis of Neutron Stars, which is the central subject of this thesis, is an interesting approach to understand the problem, as both intrinsic properties and observational biases are taken into account. These technique is based on Monte Carlo methods, applied to simulate the whole population of neutron stars. The main objective of the thesis has been to perform a multi-wavelength study of the different populations of Neutron Stars focusing in the effects of magneto-thermal evolution. This report consists of a global summary of the objectives, methods and main results of the thesis. It is structured as follows. The first chapter gives an introduction to Neutron Stars. Chapter two is a description of the method of Population Synthesis of Neutron Stars. In chapter three a global discussion of the main results is presented. Chapter four closes the report with the conclusions. An appendix is also included which constitutes a description of a method based on the pulsar current analysis.
15

<strong>Relativistic Magnetospheres: Dynamics And Emission Properties</strong>

Praveen Sharma (16326144) 14 July 2023 (has links)
<p>     </p> <p>This article-based dissertation provides a review of the broad subject of Neutron Star- their emission properties, plasmoids ejection events, and their proposed physical mechanisms. The primary purpose of this dissertation is to provide an extensive description of the research projects I undertook during my tenure as a Graduate Research Assistant, under the guidance of my advisor Prof. Maxim Lyutikov. </p> <p><br></p> <p>Chapter 1 provides a broad overview of the Neutron stars, their classification, proposed emission models, and a summary of magnetars and associated observed phenomena. </p> <p><br></p> <p>In Chapter 2, I present a version of the research article published in the <em>Monthly Notices of the Royal Astronomical Society</em>. The work is titled "Rotating Neutron Stars Without Light Cylinders" and discusses twisted and differentially rotating neutron star magnetospheres that do not have a light cylinder, generate no wind, and thus do not spin down. The magnetosphere of such neutron stars is composed of embedded differentially rotating flux surfaces, with the angular velocity decreasing as Ω ∼ 1/r. It was found, both analytically and using numerical simulations, that for spin parameters larger than some critical value, the light cylinder appears, the magnetosphere opens up, and the wind is generated. </p> <p>In Chapter 3, I present a version of the research article published in <em>The Astrophysical Journal</em>. The work is titled "Relativistic Magnetic Explosions" and was undertaken under the supervision of Dr. Maxim Barkov, in collaboration with Dr. Konstantinos N. Gourgou- liatos and Dr. Lyutikov2 Barkov. It discusses the dynamics of magnetically driven explosive astrophysical events, like magnetar bursts and flares. We model a relativistic expansion of highly magnetized and highly magnetically over-pressurized clouds. We observe that the corresponding dynamics are qualitatively different from fluid explosions due to the topological constraint of the conservation of the magnetic flux. Using analytical, relativistic MHD as well as force-free calculations, we find that the creation of a relativistically expanding, causally disconnected flow obeys a threshold condition: it requires sufficiently high initial over-pressure and sufficiently quick decrease of the pressure in the external medium (the pre-explosion wind). In the subcritical case, the magnetic cloud just puffs up" and quietly expands with the pre-flare wind. We also find a compact analytical solution to the Prendergast problem - the expansion of force-free plasma into the vacuum. </p> <p><br></p> <p>Chapter 4 is the extension of the work in Chapter 3 and focuses on the dynamics of relativistic Coronal Mass Ejections (CMEs), from launching by shearing of foot-points (either slowly or suddenly), to propagation in the preceding magnetar wind. The work has been accepted to be published in <em>Monthly Notices of the Royal Astronomical Society</em>. For slow shear, we find that most of the energy injected into the CME is first spent on the work done on breaking through the over-laying magnetic field. At later stages, sufficiently powerful CMEs may lead to the detonation of a CME and opening of the magnetosphere beyond some equipartition radius req, where the decreasing energy of the CME becomes larger than the decreasing external magnetospheric energy. Post-CME magnetosphere relaxes via the formation of a plasmoid-mediated current sheet, initially at req, and slowly reaching the light cylinder. Both the location of the foot-point shear and the global magnetospheric configuration affect the frequent/weak versus rare/powerful CME dichotomy - to produce powerful flares the slow shear should be limited to field lines that close in near the star.  After the creation of a topologically disconnected flux tube, the tube quickly (at ∼ the light cylinder) comes into force-balance with the preceding wind and is passively advected/frozen in the wind afterward. </p> <p>For fast shear case, the shearing of foot-points leads to the generation of Alfvén wave and the pressure of such Alfvén leads to the opening of the magnetosphere. At distances much larger than the light cylinder, the resulting shear Alfvén waves propagate through the wind non-dissipatively. </p> <p><br></p> <p>In Chapter 5, I switch gears and study the optical polarization of Crab pulsar. I start by deriving a general relation for the polarization direction of the electric dipole-type radiation produced by a particle moving in an arbitrary electromagnetic field. The derived relations are then applied to reproduce optical polarization swings in Crab pulsar assuming a Michel- Bogovalov solution for the current sheet. With this, I was able to reproduce down to intricate details the spin-phase trajectory of the position angle (PA) in the Stokes parameters U-Q plane. This chapter however remains a work in progress. We still don't fully understand the physical mechanism behind the polarization characteristics of the Crab, especially the origin of the point where the inner loop connects with the bigger outer loop. I plan to fully answer these questions before sending our findings for publication. </p> <p><br></p> <p>Chapter 6 summarizes the main results and conclusions of the research projects and mentions the prospects. References are compiled after the appendices so that they are first cited, followed by a CV and a list of publications. </p>

Page generated in 0.0244 seconds