• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SOFT MAGNETIC MICROROBOTS FOR TARGETED DRUG DELIVERY

Nahrin Nowrose (7251026) 17 October 2019 (has links)
<p>Microrobots have a promising prospect to be used in healthcare and bioengineering applications due to their capability to gently access small and delicate body sites. Unfortunately, traditional materials used for the fabrication of microrobots are rigid, hindering safe operation due to the transfer of high stresses to the surrounding tissue. Additionally, traditional microrobots are often not biocompatible, which threatens the health of the patient if not properly retrieved. This dissertation describes the fabrication and actuation of small-scale (several micrometers in all dimensions) magnetic robots that are soft, biocompatible, and capable of moving over smooth and corrugated surface. <u>S</u>oft <u>M</u>agnetic <u>M</u>icro <u>R</u>obots (SMµRs) can carry payloads in their porous interior and release them using external magnetic inputs. SMµRs has therefore the potential to be used in a wide range of applications—including targeted drug release and remote biosensing and bio sampling—and access a number of difficult-to-reach sites in the human body, such as intestines or blood vessels. The structure of SMµRs consist of three thin layers: Two layers of polymer with embedded magnetic particles aligned along a preferential direction. One porous layer, in between the magnetic layers, where the SMµRs can accumulate and release payloads. SMµRs are small, light in weight, and fast and inexpensive to fabricate. Moreover, the manufacturing of SMµRs is compatible with large-scale production processes, facilitating their future commercial exploitation. Using external rotating magnetic fields, the position of the SMµRs can be controlled wirelessly <i>via</i> tumbling locomotion. We demonstrate two types of tumbling locomotion (length-wise and side-wise) as well as the possibility to release the internal payload of the SMµRs in a discrete or continuous manner using only changes in the intensity of the external magnetic field. We studied the performance of SMµRs under a variety of environmental conditions as well as their capability of overcoming obstacles.</p>
2

Mobile Magnetic Microrobots Control and Study in Microfluidic Environment : New Tools for Biomedical Applications / Contrôle et étude de microrobots magnétiques mobiles en milieu microfluidique : nouveaux outils pour le biomédicale

Salmon, Hugo 07 October 2014 (has links)
Dans le domaine du développement d'outils de micromanipulation de haute précision pour le biomédical, les microrobots mobiles immergés font figures de technologie émergente prometteuse pour des applications in-vitro, puis à plus long terme pour l'in-vivo. Mes travaux portent sur l'étude de la propulsion de microrobots par voie magnétique dans des fluides circulant dans des microcanaux, à une échelle où les phénomènes d'adhérence et d'amortissement prévalent. Leur application pour des opérations de transduction est développée dans un deuxième volet.Un dispositif d'asservissement par vision à haute fréquence d’échantillonnage (~5kHz) a été développé rendant possible le contrôle sous champ magnétique uniforme ou gradient. Les performances du système ont notamment demandé l’implémentation d'une interface multi-tâches afin de pouvoir acquérir et traiter les images en parallèle de l'actuation du robot. L'analyse de la dynamique permet de mieux appréhender les phénomènes parfois imprévisibles liés au déplacement du robot, MagPol, intégré dans une puce microfluidique. Il peut réciproquement servir de capteur dans son environnement fluidique.Ce design original de robot a été conçu pour la micromanipulation et permet également d'explorer des nouvelles stratégies de déplacement. Ces capacités ont été éprouvées sur des objets de même taille qu'en biologie cellulaire (billes, bulles).Enfin, une démonstration de l'asservissement visuel en planification de tâche a été effectuée. Sous réserve de posséder un algorithme suffisamment performant, l'échantillonnage haute fréquence en temps réel devient possible et l'observation de performances sur des trajectoires complexes est démontrée. Les performances, la portabilité et la reproductibilité du système démontrent des capacités de transduction à haut débit qui sont très prometteuses pour l'aspect applicatif. / In the research for new high performances tool for micrometric scale manipulation, mobile microrobots immersed are considered as a promising technology for in-vitro applications, and with a long term view in-vivo. My work focuses on the propulsion study of mobile microrobots immersed in microfluidic channels controlled through electromagnets. At this scale, surface and damping phenomena predominates. Application for transduction operation is developed in a second part.A high sampling rate (≈5kHz) visual servoing setup have been developed making a control possible through uniform and gradient magnetic field. Performances of the system have notably required a multi-thread programmed user interface to acquire and analyze the frame in parallel of the robot actuation. Dynamic analysis allow to better apprehend the perturbation dynamics of the robot MagPol, integrated in a microfluidic chip. It can reciprocally serve as a sensor for in fluidic environment.MagPol design has been originally conceived for micromanipulation, and also allows to explore new displacement strategies. Its capacities have been tested on beads and bubbles equivalent to cell biology characteristic size (10µm – 100µm).Finally, a demonstration of planned trajectory using visual servoing was accomplished. Though it has required an algorithm sufficiently efficient, high frequency real-time sampling is possible and lead to control and post observation on complex trajectory. Global performances, repeatability and portability of our system has demonstrated its capacities as a high-throughput transducer, promising for single microagent applications.
3

FABRICATION OF MAGNETIC TWO-DIMENSIONAL AND THREE-DIMENSIONAL MICROSTRUCTURES FOR MICROFLUIDICS AND MICROROBOTICS APPLICATIONS

Li, Hui 01 January 2014 (has links)
Micro-electro-mechanical systems (MEMS) technology has had an increasing impact on industry and our society. A wide range of MEMS devices are used in every aspects of our life, from microaccelerators and microgyroscopes to microscale drug-delivery systems. The increasing complexity of microsystems demands diverse microfabrication methods and actuation strategies to realize. Currently, it is challenging for existing microfabrication methods—particularly 3D microfabrication methods—to integrate multiple materials into the same component. This is a particular challenge for some applications, such as microrobotics and microfluidics, where integration of magnetically-responsive materials would be beneficial, because it enables contact-free actuation. In addition, most existing microfabrication methods can only fabricate flat, layered geometries; the few that can fabricate real 3D microstructures are not cost efficient and cannot realize mass production. This dissertation explores two solutions to these microfabrication problems: first, a method for integrating magnetically responsive regions into microstructures using photolithography, and second, a method for creating three-dimensional freestanding microstructures using a modified micromolding technique. The first method is a facile method of producing inexpensive freestanding photopatternable polymer micromagnets composed NdFeB microparticles dispersed in SU-8 photoresist. The microfabrication process is capable of fabricating polymer micromagnets with 3 µm feature resolution and greater than 10:1 aspect ratio. This method was used to demonstrate the creation of freestanding microrobots with an encapsulated magnetic core. A magnetic control system was developed and the magnetic microrobots were moved along a desired path at an average speed of 1.7 mm/s in a fluid environment under the presence of external magnetic field. A microfabrication process using aligned mask micromolding and soft lithography was also developed for creating freestanding microstructures with true 3D geometry. Characterization of this method and resolution limits were demonstrated. The combination of these two microfabrication methods has great potential for integrating several material types into one microstructure for a variety of applications.

Page generated in 0.0316 seconds