Spelling suggestions: "subject:"cagnetic air codistribution actionfunction"" "subject:"cagnetic air codistribution functionaction""
1 |
Local Atomic and Magnetic Structure of Multiferroic (Sr,Ba)(Mn,Ti)O3Jones, Braedon 18 December 2023 (has links) (PDF)
We present a detailed study of the local atomic and magnetic structure of the type-I multiferroic perovskite system (Sr,Ba)(Mn,Ti)O3 using x-ray and neutron pair distribution function (PDF) analysis, polarized neutron scattering, and muon spin relaxation (μSR) techniques. The atomic PDF analysis reveals widespread nanoscale tetragonal distortions of the crystal structure even in the paraelectric phase with average cubic symmetry, corresponding to incipient ferroelectricity in the local structure. Magnetic PDF analysis, polarized neutron scattering, and μSR likewise confirm the presence of short-range antiferromagnetic correlations in the paramagnetic state, which grow in magnitude as the temperature approaches the magnetic transition. We show that these short-range magnetic correlations coincide with a reduction of the tetragonal (i.e. ferroelectric) distortion in the average structure, suggesting that short-range magnetism can play an important role in magnetoelectric and/or magnetostructural phenomena even without genuine long-range magnetic order. The reduction of the tetragonal distortion scales linearly with the local magnetic order parameter. These findings provide greater insight into the multiferroic properties of (Sr,Ba)(Mn,Ti)O3 and demonstrate the importance of investigating the local atomic and magnetic structure to gain a deeper understanding of the intertwined degrees of freedom in multiferroics.
|
2 |
Short-Range Magnetic Correlations, Spontaneous Magnetovolume Effect, and Local Distortion in Magnetic Semiconductor MnTeBaral, Raju 19 December 2022 (has links)
The antiferromagnetic semiconductor MnTe has recently attracted significant interest as a potential high-performance thermoelectric material. Its promising thermoelectric properties are due in large part to short-range magnetic correlations in the paramagnetic state, which enhance the thermopower through the paramagnon drag effect. Using magnetic pair distribution function (mPDF) analysis of neutron total scattering data, we present a detailed, real-space picture of the short-range magnetic correlation in MnTe, offering a deeper view into the paramagnon drag effect and the nature of the correlated paramagnetic state. We confirm the presence of nanometer-scale antiferromagnetic correlations far into the paramagnetic state, show the evolution of the local magnetic order parameter across the N\'eel temperature T_N=307 K, and discover a spatially anisotropic magnetic correlation length. By combing our mPDF analysis with traditional atomic PDF analysis, we also gain detailed knowledge of the magnetostructural response in MnTe. We observed a spontaneous volume contraction of nearly 1\%, the largest spontaneous magnetovolume effect reported so far for any antiferromagnetic system. The lattice strain scales linearly with the local magnetic order parameter, in contrast to the quadratic scaling observed for the conventional magnetostriction properties of this technologically relevant material. Using neutron and X-ray PDF analysis, we also investigated the local distortion on MnTe and Mn-based systems, MnS and MnO as a function of temperature. Such local distortion on MnTe increases with the rise in temperature and becomes more pronounced at 500 K.
|
Page generated in 0.1493 seconds