• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strong Coupling Between Photonic Cavities

Wei, Xiang 05 January 2018 (has links)
As the performance of computers has improved dramatically since the 1990s, many interesting photonic crystal properties have been theoretically and experimentally discovered. For example, the strong coupling between photonic crystal cavities was revealed in the 2000s; many groups have successfully fabricated these cavities and verified strong coupling experimentally using silicon. In this thesis, instead of using silicon, we present new results on photonic crystals made by thin indium tin oxide (ITO) layers. Compared to silicon, ITO is not an ideal material to make a photonic crystal because of its comparatively low refractive index and limited transparency. However, it is an interesting model material for experiments in photoemission electron microscopy (PEEM). ITO has a high conductivity that mitigates surface charge-up in an electron microscope and allows electron emission after 2-photon absorption with visible light. We are interested in PEEM because it enables the visualization of the propagation of light with nanometer resolution, i.e., below the optical diffraction limit. In this thesis, we theoretically study ITO photonic crystals in one or two-dimensions with the help of the finite-difference time-domain (FDTD) software. We analyze the electromagnetic field distribution in a manner that the field distributions can directly be compared to experimental PEEM results. We also simulate the strong coupling effect between neighboring cavities and illustrate it in terms of the classical oscillator model.
2

Fracture of Ferroelectric Materials

Oates, William Sumner 18 August 2004 (has links)
Ferroelectric materials continue to find increasing use in actuator, sensor and transducer design. Questions regarding lifetime and reliability remain a concern due to the inherent low fracture toughness and complex material behavior. The poling procedure required for use in actuator and sensing devices introduces anisotropy in elastic and dielectric coefficients as well as piezoelectric coupling between the mechanical and electrical fields. This introduces complex fracture behavior which necessitates advanced analytical techniques and fracture characterization. In this dissertation, fracture mechanics of ferroelectric materials is evaluated by employing different analytical techniques and experimental methodology. The theoretical work has focused on linear piezoelectric coupling that accounts for the influence of anisotropy and heterogeneity on fracture. A new orthotropic rescaling technique is presented that explicitly solves the anisotropic linear elastic piezoelectric crack problem in terms of material coefficients. The effects of heterogeneities on electric field induced microfracture are analyzed by implementing a crack at the edge of a heterogeneous piezoelectric inclusion. A positive, flaw-localized driving force is realized when permeable crack face boundary conditions are considered. The experimental portion of the work evaluates fracture behavior in the ferroelectric ceramic, lead zirconate titanate (PZT), and the ferroelectric relaxor single crystal PZN-4.5%PT. Relative humidity and electric boundary conditions are shown to have significant effects on crack kinetics in PZT. Fracture anisotropy in single crystal PZN-4.5%PT is characterized using the Single-Edge V-notch Beam (SEVNB) method and Vickers indentations. Scanning electron micrographs are used to determine the crack profile which leads to a prediction of crack tip toughness and local energy release rate. A weak cleavage plane is identified in the single crystal relaxor which contains a significantly lower toughness in comparison to the ferroelectric ceramic PZT.
3

Études théoriques et expérimentales d'accouplements magnétiques supraconducteurs / Theoretical and Experimental Study of Superconducting Magnetic Couplers

Belguerras, Lamia 26 May 2014 (has links)
Les accouplements (ou coupleurs) magnétiques servent à transmettre le couple d'un moteur vers sa charge sans contact mécanique. La suppression de ces contacts permet de réduire les bruits et vibrations, d'augmenter la fiabilité et d'assurer l'étanchéité dans des environnements difficiles. Dans le cas des moteurs supraconducteurs, un accouplement utilisant des matériaux supraconducteurs permet une nette augmentation des performances tout en transmettant le couple entre un environnement cryogénique (cryostat) et la température ambiante. Ce mémoire porte sur l'étude de coupleurs magnétiques à base de supraconducteurs à haute température critique (HTC) et d'aimants permanents. Deux topologies sont proposées, l'une à flux radial et l'autre à flux axial. Des outils analytiques et numériques sont développés pour le dimensionnement des accouplements étudiés. Un modèle analytique 2D de calcul du champ magnétique dans un accouplement supraconducteur à flux radial est développé et validé par éléments finis. Ce modèle est par la suite utilisé dans une procédure d'optimisation par algorithmes génétiques. L'objectif étant de rechercher les dimensions de l'accouplement qui maximisent le couple et minimisent la longueur du fil supraconducteur. Un prototype d'accouplement à flux axial est aussi réalisé. Plusieurs essais de caractérisation des bobines HTC sont menés. Des résultats de mesure de champ magnétique, de courant critique et de couple sont présentés / Magnetic couplings (or couplers) are used to transmit torque from a prime mover to its load without mechanical contact. This contactless transmission allows to reduce noise and vibration, to increase reliability and ensure hermetic isolation in severe environments. When the prime mover is a superconducting motor, a coupler which uses superconducting materials has more torque transmission capabilities and enables to transmit torque between a cryogenic media (cryostat) and the ambient temperature. This work focuses on the study of magnetic couplers using high temperature superconductors (HTS) and permanent magnets. Radial and axial field magnetic couplings, for which we developed analytical and numerical design tools, are proposed. A 2D analytical model for calculating the magnetic field distribution in a flux focusing HTS coupling is developed and validated by finite element computations. This model is then embedded in a genetic algorithms optimization procedure. The aim is to find the dimensions of the coupling that maximize torque and minimize the overall length of the HTS wires. A prototype axial field HTS coupler has been also designed, constructed and tested. Several tests have been conducted to characterize the HTS coils. Results of magnetic field, critical current and torque measurements are presented
4

Conversor SEPIC modificado com acoplamento magnético série e célula multiplicadora de tensão / Modified SEPIC converter with serial magnetic coupling and voltage multiplier cell

Kravetz, Fábio Inocêncio 29 March 2018 (has links)
As fontes renováveis de energia, em especial a energia solar fotovoltaica vem ganhando espaço nos últimos anos devido ao avanço da tecnologia, redução dos custos e redução das fontes não-renováveis. Os painéis fotovoltaicos isoladamente ou para pequenas aplicações geram uma baixa tensão de saída e a adequação dos níveis de tensão fornecidos em sua saída aos requeridos pela concessionária de energia elétrica é um desafio. Neste trabalho é apresentada uma nova estrutura modificada da topologia do conversor SEPIC que usa as técnicas de acoplamento magnético série e células multiplicadoras de tensão em conjunto, afim de obter um elevado ganho de tensão, visando a aplicação em fontes renováveis de energia. Optou-se pela solução não isolada, pois esta apresenta diversas vantagens em relação a solução isolada, como: menor peso, volume, custo e maior eficiência energética devido a menores perdas de potência nos indutores acoplados. Também, a utilização da indutância de dispersão, que é um parâmetro intrínseco de um acoplamento magnético, permite a operação com comutação suave ZCS (ZCS, do inglês Zero Current-Switching) no interruptor, aumentando a eficiência da estrutura com a redução das perdas por comutação. No decorrer do trabalho são realizadas as análises das etapas de operação de diversos conversores a partir do conversor SEPIC modificado, evolui-se pela adição de técnicas elevadoras de tensão até a estrutura proposta neste trabalho. Por fim, é realizado o controle em malha fechada utilizando um controlador PID analógico que fornece uma resposta rápida e consequente correção a possíveis mudanças na variável controlada. Os resultados teóricos e experimentais do conversor proposto são descritos neste trabalho para validar as análises desenvolvidas e demonstrar a eficiência da estrutura. O protótipo é desenvolvido para uma aplicação com potência nominal de 200 W, tensão nominal de saída igual a 450 V e uma tensão de entrada variando entre 20 V e 40 V. O rendimento obtido para o conversor proposto operando na frequência de 35 kHz na potência nominal é de 91,28% e eficiência igual a 89,04% para a potência nominal de 200 W na frequência de 90 kHz. / The renewable energy resources, in special the photovoltaic energy has been achieve more space in last years due to technology advances, cost reduction and decrease of the non-renewable energy sources. The photovoltaic panels in isolation or to small applications generate a low output voltage and to comply with of voltage levels provided in panel’s output to those required by electric power concessionaire is a challenge. In this work is presented a new structure modified of the SEPIC converter topology who uses the coupling magnetic series and voltage multiplier cell techniques together, in order to obtain a high voltage gain aiming at application in renewable energy resources. It was has been choosen non-isolated solution, because this present several advantages in relation to the isolated solution, such as: lower weight, volume, cost and high energy efficiency due to smaller power losses in the coupled inductors. The use leakage inductance, who is an intrinsic parameter of the a magnetic coupling, allows soft-switching operation ZCS in switch, increasing the structure’s efficiency with reduction of switching losses. During the work are perform the analysis of the operation steps of several converters as of the modified SEPIC converter and evolves by addition high voltage techniques until the structure proposed in this work. Finally, is performed the closed loop control using the analog PID controller who provides a fast response and consequent correction to possible changes in the controlled variable. The theoretical and experimental results of the proposed converter are described in this work to validate the developed analysis and demonstrate the structure’s efficiency. The prototype is developed to a application with nominal power of 200 W, nominal output voltage equal 450 V and an input voltage varying between 20 V and 40 V. The efficiency obtained to proposed converter operating in frequency of the 35 kHz in nominal power is 91,28% and efficiency equal 89,04% to nominal power in frequency of the 90 kHz.

Page generated in 0.089 seconds