• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mathematic approaches for the calibration of the CHAMP satellite magnetic field measurements

Yin, Fan January 2010 (has links)
CHAMP (CHAllenging Minisatellite Payload) is a German small satellite mission to study the earth's gravity field, magnetic field and upper atmosphere. Thanks to the good condition of the satellite so far, the planned 5 years mission is extended to year 2009. The satellite provides continuously a large quantity of measurement data for the purpose of Earth study. The measurements of the magnetic field are undertaken by two Fluxgate Magnetometers (vector magnetometer) and one Overhauser Magnetometer (scalar magnetometer) flown on CHAMP. In order to ensure the quality of the data during the whole mission, the calibration of the magnetometers has to be performed routinely in orbit. The scalar magnetometer serves as the magnetic reference and its readings are compared with the readings of the vector magnetometer. The readings of the vector magnetometer are corrected by the parameters that are derived from this comparison, which is called the scalar calibration. In the routine processing, these calibration parameters are updated every 15 days by means of scalar calibration. There are also magnetic effects coming from the satellite which disturb the measurements. Most of them have been characterized during tests before launch. Among them are the remanent magnetization of the spacecraft and fields generated by currents. They are all considered to be constant over the mission life. The 8 years of operation experience allow us to investigate the long-term behaviors of the magnetometers and the satellite systems. According to the investigation, it was found that for example the scale factors of the FGM show obvious long-term changes which can be described by logarithmic functions. The other parameters (offsets and angles between the three components) can be considered constant. If these continuous parameters are applied for the FGM data processing, the disagreement between the OVM and the FGM readings is limited to pm1nT over the whole mission. This demonstrates, the magnetometers on CHAMP exhibit a very good stability. However, the daily correction of the parameter Z component offset of the FGM improves the agreement between the magnetometers markedly. The Z component offset plays a very important role for the data quality. It exhibits a linear relationship with the standard deviation of the disagreement between the OVM and the FGM readings. After Z offset correction, the errors are limited to pm0.5nT (equivalent to a standard deviation of 0.2nT). We improved the corrections of the spacecraft field which are not taken into account in the routine processing. Such disturbance field, e.g. from the power supply system of the satellite, show some systematic errors in the FGM data and are misinterpreted in 9-parameter calibration, which brings false local time related variation of the calibration parameters. These corrections are made by applying a mathematical model to the measured currents. This non-linear model is derived from an inversion technique. If the disturbance field of the satellite body are fully corrected, the standard deviation of scalar error triangle B remains about 0.1nT. Additionally, in order to keep the OVM readings a reliable standard, the imperfect coefficients of the torquer current correction for the OVM are redetermined by solving a minimization problem. The temporal variation of the spacecraft remanent field is investigated. It was found that the average magnetic moment of the magneto-torquers reflects well the moment of the satellite. This allows for a continuous correction of the spacecraft field. The reasons for the possible unknown systemic error are discussed in this thesis. Particularly, both temperature uncertainties and time errors have influence on the FGM data. Based on the results of this thesis the data processing of future magnetic missions can be designed in an improved way. In particular, the upcoming ESA mission Swarm can take advantage of our findings and provide all the auxiliary measurements needed for a proper recovery of the ambient magnetic field. / CHAMP (CHAllenging Minisatellite Payload) ist eine deutsche Kleinsatellitenmission für die Forschung und Anwendung in Bereich der Geowissenschaften und Atmosphärenphysik. Das Projekt wird vom GFZ geleitet. Mit seinen hochgenauen, multifunktionalen, sich ergänzenden Nutzlastelementen (Magnetometer, Akzelerometer, Sternsensor, GPS-Empfänger, Laser-Retroreflektor, Ionendriftmeter) liefert CHAMP erstmalig gleichzeitig hochgenaue Schwere- und Magnetfeldmessungen (seit Mitte 2000). Dank des bisherigen guten Zustandes des Satelliten ist die auf 5 Jahre ausgelegte Mission bis 2009 verlängert geworden. An Board befinden sich ein skalares Overhauser-Magnetometer(OVM) für Kalibrierungszwecke sowie zwei Fluxgate-Magnetometer(FGM) zur Messung des magnetischen Feldvektors. Die Messungen vom FGM werden immer verglichen mit denen vom OVM und korregiert im Fall von Widersprüche, das ist die sog. Skalar-Kalibrierung. Um eine zuverlässige Datenqualität während der 8 jährigen Mission zu garantieren, ist die Nachkalibrierung implementiert. Im Rahmen der standard mäßigen Datenverarbeitung werden die Instrumentenparameter des FGM alle 15 Tage neu bestimmt. Das Ziel der vorliegenden Arbeit ist es, eine Verbesserung der Vektormagnetfelddaten zu erzielen durch eine neue Methode der Kalibrierung, die die Eigenschaften der Sensoren und Störung vom Raumfahrzeug mit berücksichtigt. Die Erfahrung aus den zurückliegenden Jahren hat gezeigt, dass sich die Skalenfaktoren des FGM stark mit der Zeit ändern. Dieser Verlauf lässt sich gut durch eine Logarithmuskurve anpassen. Andere Parameter wie die Winkel und die Offsets scheinen stabil zu sein. Eine Ausnahme macht der Offset der Z-Komponent. Dieser bedarf einer regelmäßigen Korrektur. Während die Standardverarbeitung eine undifferenzierte Bestimmung aller 9 FGM Parameter durch nicht-lineare Inversion der skalar Daten vornimmt, beziehen wir jetzt die langzeitlichen Eigenschaften der Parameter in die Bestimmung mit ein. Eine weitere Verbesserung der CHAMP-Magnetfelddaten konnte erreicht werden durch geeignete Berücksichtigung von Störung vom Raumfahrzeug. Die verbleibenden Unsicherheiten konnten durch diese Maßnahmen auf eine Standardabweichung von 0.1nT reduziert werden.
2

Magnetic field measurements of O stars with FORS 1 at the VLT.

Hubrig, S., Schöller, M., Schnerr, R., González, J., Ignace, Richard, Henrichs, H. 01 November 2008 (has links) (PDF)
Context.The presence of magnetic fields in O-type stars has been suspected for a long time. The discovery of these fields would explain a wide range of well documented enigmatic phenomena in massive stars, in particular cyclical wind variability, Hα emission variations, chemical peculiarity, narrow X-ray emission lines, and non-thermal radio/X-ray emission. Aims.To investigate the incidence of magnetic fields in O stars, we acquired 38 new spectropolarimetric observations with FORS 1 (FOcal Reducer low dispersion Spectrograph) mounted on the 8-m Kueyen telescope of the VLT. Methods.Spectropolarimetric observations were obtained at different phases for a sample of 13 O stars. Ten stars were observed in the spectral range 348−589 nm, HD 36879 and HD 148937 were observed in the spectral region 325−621 nm, and HD 155806 was observed in both settings. To prove the feasibility of the FORS 1 spectropolarimetric mode for the measurements of magnetic fields in hot stars, we present in addition 12 FORS 1 observations of the mean longitudinal magnetic field in θ1 Ori C and compare them with measurements obtained with the MuSiCoS, ESPaDOnS, and Narval spectropolarimeters. Results.Most stars in our sample, which were observed on different nights, show a change of the magnetic field polarity, but a field at a significance level of 3σ was detected in only four stars, HD 36879, HD 148937, HD 152408, and HD 164794. The largest longitudinal magnetic field, Bz = −276 ± 88 G, was detected in the Of?p star HD 148937. We conclude that large-scale organized magnetic fields with polar field strengths larger than 1 kG are not widespread among O-type stars.
3

Density, temperature and magnetic field measurements in low density plasmas

Oliver, Matthew January 2018 (has links)
Low density plasmas are found throughout the known universe. Therefore, accurate diagnostic methods have implications for our understanding of a variety of topics, ranging from star formation to the semi conductor industry. Low density plasmas are ubiquitous in the material processing industry. However, measurements of the electron temperature and density, two of the most fundamental plasma properties, are not straightforward. In the laboratory, we create a low density, radio frequency, helium plasma with a bi-Maxwellian electron distribution, similar to those found in the semiconductor processing industry. We use optical emission spectroscopy to perform a non invasive measurement of the plasma conditions. We compare this to measurements obtained using a Langmuir probe, a commonly used invasive diagnostic. The optical emission spectroscopy is found to be insensitive to electron density but good agreement is found between the two techniques for values of the temperature of the hot electron component of the bi-Maxwellian. Plasmas created with high-intensity lasers are able to recreate conditions similar to those found during astrophysical events. This development has led to these condi- tions being explored in laboratories around the world. An experiment was performed at the Rutherford Appleton Laboratory in Didcot, UK, investigating the properties of supersonic turbulent jets. For the first time a magneto-optic probe was used to measure the magnetic field in a low-density supersonic turbulent plasma. The results were compared to measurements taken using a magnetic-induction probe. Good agreement was found between measurements of the magnetic field strength within the plasma; however, the magnetic power spectra differ. We attribute this to the dif- ference in integration length between the two measurements. Statistical properties of the velocity field are inferred from the magnetic field measurements, which compare favourably to astrophysical observations and hydrodynamic simulations.
4

Utilisation de la Magnéto-Impédance Géante pour la réalisation d'un capteur de courant / A current sensor using the Giant Magneto-Impedance effect

Zidi, Manel 18 November 2014 (has links)
Le potentiel de la GMI a été exploré pour la réalisation d'un capteur magnétique de mesure du courant électrique. Une partie notable de ce projet a été consacrée à l'investigation de l'électronique de conditionnement du capteur, notamment, l'électronique d'excitation de l'élément sensible et l'électronique de détection de la variation de la tension à ces bornes. Une nouvelle solution d'oscillateur numérique précis, stable et de haute fréquence a été proposée. Un convertisseur tension-courant basé sur la source de Howland a été associé à cet oscillateur. Pour la détection, des technologies innovantes et prometteuses, tel que le détecteur RMS-DC pour les mesures précises, ont été proposées. Un conditionnement électronique permet d'utiliser ce détecteur pour la démodulation des signaux alternatifs. Une approche originale de détecteur d'amplitude sans seuil utilisant un amplificateur limiteur a été développée. Ces technologies ont été intégrées avec succès dans un capteur de courant électrique. / A GMI current sensor was designed. This study was devoted to the investigation of the electronic conditioning of the sensor. An accurate, stable and high frequency digital oscillator was developed. A voltage-to-current converter based on the Howland source was associated to this oscillator. An innovative and promising technology for precise measurements was proposed: the RMS-DC detector. This detector was conditioned for demodulating AC signals. Also an original approach of an amplitude detector using a limiting amplifier was developed. These technologies have been successfully integrated into a GMI current sensor.

Page generated in 0.0981 seconds