Spelling suggestions: "subject:"cagnetic fields -- aphysiological effect"" "subject:"cagnetic fields -- atphysiological effect""
1 |
Modification of x-ray tissue doses with strong magnetic fieldsBorke, Michael Faison 08 1900 (has links)
No description available.
|
2 |
Effects of electric and magnetic fields on selected physiological and reproductive parameters of American kestrelsFernie, Kimberly J. January 1998 (has links)
No description available.
|
3 |
Effects of electric and magnetic fields on selected physiological and reproductive parameters of American kestrelsFernie, Kimberly J. January 1998 (has links)
Birds nest under electric and magnetic fields (EMFs) generated by transmission liners which may affect their reproductive success and/or melatonin governing their circadian and circannual cycles. Over two years, captive kestrels were used to determine whether EMFs affect their plasma melatonin concentrations and their reproductive success. EMFs were equivalent to that which wild kestrels are exposed to while nesting under 735 kV transmission fines, and daily exposure used in the captive study (88--98% time budget) was potentially equivalent to that of wild kestrels (90% X, 80% X). Captive kestrels were housed in control or EMF conditions to determine short-term (one season; S-EMF) and longer-term EMF (two seasons; L-EMF) effects. / Plasma melatonin in adult EMF males was suppressed at 42 d and elevated at 70 d of EMF exposure compared to controls. Melatonin levels in EMF males at mid-season were similar to controls at season's end, suggesting a seasonal phase-shift. Melatonin was suppressed in L-EMF fledgling birds but not in adult females or nudes (1995) at 70 d. Plasm melatonin, higher in adult males than females at 70 d post-pairing, was not directly associated with body mass changes in kestrels. / Captive EMF birds were more active and alert but groomed less often than controls. EMF exposure affected reproductive success of kestrels. Fertility and fledging success were higher, and hatching success lower in S-EMF clutches. Hatching success was higher, but fledging success lower in L-EMF clutches. In S-EMF clutches, mean egg volume and mass were greater, eggs had slightly more albumen but thinner eggshells, and embryos were larger than controls. L-EMF hatchlings were heavier than controls. / The melatonin results for male kestrels indicate that kestrels perceive EMFs as light, thus altering their photoperiod. Photoperiodic manipulations advance molt onset, which is associated with increased body mass in male kestrels. S-EMF males were heavier at 56 d of exposure when molt began, but this was unlikely related to feed intake winch was unchanged. EMF exposure had no effect on body mass and pectoral muscle scores of reproducing females. The sexually-dimorphic response in body mass and melatonin concentrations suggests that male kestrels may be more sensitive to EMF exposure than females.
|
4 |
Studies of magnetic sensitivity in the yellowfin tuna, Thunnus albacaresWalker, Michael Mathew January 1983 (has links)
Typescript. / Bibliography: leaves 239-263. / Microfiche. / xiii, 263 leaves, bound ill. 29 cm
|
5 |
Cognitive and magnetosensory ecology of the yellow stingray, Urobatis jamaicensisUnknown Date (has links)
Elasmobranchs (sharks, skates, and rays) migrate across a wide range of
spatiotemporal scales, display philopatry, seasonal residency, and maintain
home ranges. Many animals use the Earth’s magnetic field to orient and navigate
between habitats. The geomagnetic field provides a variety of sensory cues to
magnetically sensitive species, which could potentially use the polarity, or
intensity and inclination angle of the field, to derive a sense of direction, or
location, during migration. Magnetoreception has never been unequivocally
demonstrated in any elasmobranch species and the cognitive abilities of these
fishes are poorly studied. This project used behavioral conditioning assays that
paired magnetic and reinforcement stimuli in order to elicit behavioral responses.
The specific goals were to determine if the yellow stingray, Urobatis jamaicensis,
could detect magnetic fields, to quantify the nature of the magnetic stimuli it could
detect, and to quantify the learning and memory capabilities of this species. The results supported the original hypotheses and demonstrated that the yellow
stingray could: discriminate between magnetic and non-magnetic objects; detect
and discriminate between changes in geomagnetic field strength and inclination
angle; and use geomagnetic field polarity to solve a navigational task. The yellow
stingray learned behavioral tasks faster and retained the memories of learned
associations longer than any batoid (skate or ray) to date. The data also suggest
that this species can classify magnetic field stimuli into categories and learn
similar behavioral tasks with increased efficiency, which indicate behavioral
flexibility. These data support the idea that cartilaginous fishes use the
geomagnetic field as an environmental cue to derive a sense of location and
direction during migrations. Future studies should investigate the mechanism,
physiological threshold, and sensitivity range of the elasmobranch magnetic
sense in order to understand the effects of anthropogenic activities and
environmental change on the migratory ability of these fishes. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
|
6 |
Analyse de l'hypothèse de la perturbation des biorythmes par les champs magnétiques d'extrêmement basse fréquence: mécanismes possibles, impact en santé publique, protocoles de mise a l'épreuve / Analysis of the hypothesis of biorhythms disruption by extremely low frequency magnetic fields: possible mechanisms, public health impact, testing protocolsVanderstraeten, Jacques 17 June 2013 (has links)
RESUME GENERAL<p><p>Contexte :une association entre exposition prolongée aux champs magnétiques (CM) d’extrêmement basses fréquences (ELF) et risque sanitaire a été établie pour la leucémie infantile (CM 50/60 Hz de l’électricité, RR = 2,0 pour ≥ 0,4 µT d‘intensité moyennée dans le temps) et est suggérée pour le décès par maladie d’Alzheimer (CM 50/60 Hz, CM 16,7 Hz des voies ferrées pour 21 µT d’intensité moyennée dans le temps) et pour certaines hémopathies chez l’adulte (CM 16,7 Hz). Ces associations restent inexpliquées à ce jour. Sur base d’observations animales (effets des CM ELF sur la sécrétion de mélatonine) d’une part, et de la sensibilité magnétique confirmée des cryptochromes (régulateurs des biorythmes) d’autre part, il a été suggéré que ces associations puissent être dues à une perturbation des biorythmes par les CM ELF. Selon les instances internationales, une intensité > 1 mT est requise pour l’existence d’effets biologiques. <p>Objectifs et méthode :sur base d’une revue exhaustive de la littérature et de modèles théoriques reconnus, le présent travail développe certains mécanismes possibles pour un effet perturbateur des biorythmes par les CM ELF. L’impact en santé publique de cette hypothèse est ensuite évalué. Enfin, des protocoles sont proposés pour sa mise à l’épreuve, tenant compte des mécanismes envisagés. <p>Résultats :la possibilité existe d’une interaction des oscillations ELF de l’intensité et/ou de l’orientation du CM (somme vectorielle du CM ELF et du CM terrestre ou CMT) avec les cryptochromes rétiniens. Chez l’animal magnétosensible (dont le rongeur), une perturbation des biorythmes pourrait être consécutive à un mécanisme non spécifique de perturbation sensorielle. Toute observation animale pourrait donc ne pas être extrapolable à l’Homme. Chez ce dernier, une perturbation des biorythmes pourrait être causée par les oscillations de l’intensité du CM (peut- être dès < 100 µT d’intensité de CM ELF). Une telle perturbation pourrait aussi être causée par les variations spatiales de l’intensité du CMT qui existent dans l’environnement résidentiel (proximité de structures métalliques). Par ailleurs, dans l’éventualité de l’existence, chez l’Homme également, d’une sensibilité directionnelle basée sur les cryptochromes rétiniens, les oscillations de l’orientation du CM pourraient alors aussi interférer avec ces cryptochromes (peut-être dès ≤ 10 µT). Dans l’hypothèse où une telle interférence affecte les biorythmes, seules pourraient alors être concernées les oscillations dont l’amplitude atteint plusieurs degrés d’angle. Un tel mécanisme ne pourrait donc s’appliquer à la relation entre CM ELF et leucémie infantile que dans l’éventualité où les intensités les plus élevées (+ 1 à 2 SD) de CM ELF y jouent un rôle. Au cas où l’hypothèse de la perturbation des biorythmes par les CM ELF se voyait confirmée, d’autres troubles de santé seraient alors concernés et d’autres sources de CM seraient en cause, tels les CM statiques d’intensité variable émis par les lignes de transport électrifié. Les paramètres d’exposition considérés devraient inclure l’orientation relative CM ELF/CMT, mais aussi l’intensité locale du CMT (facteur à la fois déterminant et confondant dans la présente hypothèse). L’expérimentation animale devrait investiguer l’expression des clock genes. L’expérimentation humaine devrait investiguer les biorythmes chez l’enfant. Et l’épidémiologie devrait investiguer l’incidence de troubles liés à une perturbation des biorythmes en relation avec l’exposition aux CM ELF ainsi qu’aux variations locales de l’intensité du CMT. <p>Conclusions :malgré les incertitudes persistantes quant aux fonctions précises des cryptochromes de la rétine humaine et quant à l’exactitude des modèles théoriques qui décrivent les interactions entre CM et cryptochromes, certains mécanismes paraissent possibles pour une interaction entre CM ELF et biorythmes. En l’absence persistante d’alternative valide pour l’explication de l’association entre CM ELF et leucémie infantile, l’hypothèse de la perturbation des biorythmes par ces CM paraît devoir être investiguée plus avant, mais en tenant compte des variations locales d’intensité du CMT. <p>Background: An association between prolonged exposure to extremely low frequency (ELF) magnetic fields (MF) and health risk has been established for childhood leukemia (50/60 Hz MF of electricity, RR = 2.0 for ≥ 0.4 µT of time-averaged intensity) and is suggested for death by Alzheimer's disease (50/60 Hz MF, 16.7 Hz MF of railways at 21 µT of time-averaged intensity) and for some hematologic malignancies in adults (16.7 Hz MF). These associations remain unexplained so far. Based on animal studies (effects of ELF MF on melatonin secretion) on the one hand, and on the confirmed magnetic sensitivity of cryptochromes (regulators of biorhythms) on the other hand, it has been suggested that these associations may be due to a disruption of biorhythms by ELF MF. From current data, however, biological effects seem only possible at > 1 mT of intensity.<p>Objectives and methods: on the basis of an exhaustive literature review and with use of recognized theoretical models, this paper develops some possible mechanisms for disruption of biorhythms by ELF MF. The public health impact of this hypothesis is then evaluated. Finally, protocols are proposed for the testing of it, with taking into account the proposed mechanisms.<p>Results: an interaction seems possible between ELF oscillations of the intensity and/or the orientation of the ambient MF (the vector sum of both the ELF MF and the geomagnetic field or GMF) with retinal cryptochromes. In magnetosensitive animals (including rodents), disruption of biorhythms may then be secondary to a non-specific mechanism of sensory disturbance. All animal observation could therefore not be extrapolated to humans. In the latter, on his turn, a disruption of biorhythms may be caused by the oscillations of the MF intensity (perhaps from <100 µT of ELF MF intensity). Such disruption could also be caused by spatial variations of the intensity of the GMF that exist in residential environment (near steel structures). Moreover, in case of the existence in humans (like in animals) of a directional sensitivity based on retinal cryptochromes, then the oscillations of the MF orientation also could interfere with these cryptochromes (perhaps from ≤ 10 µT). In the event that such interference affects biorhythms, only oscillations of several degrees of amplitude would then be concerned. As a consequence, such a mechanism could apply to the relation between ELF MF and childhood leukemia only in the event that the highest MF intensities (Mean + 1-2 SD) also play a role in that relation. In the event the hypothesis of disruption of biorhythms by ELF MF is confirmed, other health problems would be concerned and other kind of MF would be involved, such as the static MF of variable intensity that are emitted by the lines of electrified transport. The considered exposure parameters should include the relative orientation of ELF MF and GMF, but also the local intensity of GMF (both determining factor and confounder in this case). Animal experiments should investigate the expression of clock genes. Human experimentation should investigate biorhythms in children. And epidemiology should investigate the incidence of disorders related to disruption of biorhythms in relation to exposure to ELF MF as well as to local variations in the intensity of the GMF.<p>Conclusions: Despite the persisting uncertainties about the precise functions of retinal cryptochrome as well as about the accuracy of the theoretical models that describe the interactions between MF and cryptochromes, some mechanisms seem possible for an interaction between ELF MF and biorhythms. In the persisting absence of valid alternative explanation for the association between childhood leukemia and ELF MF, the hypothesis of biorhythm disturbance by ELF MF deserves further investigation, however with taking into account local intensity variations of the GMF.<p> / Doctorat en Sciences de la santé publique / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0929 seconds