• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MICROTURBULENCE AND ABUNDANCE ANOMALIES IN CLUSTER METALLIC LINE A STARS

Smith, Myron Arthur, 1944- January 1971 (has links)
No description available.
2

A study of magnetic, line-blanketed model atmospheres /

Carpenter, Kenneth George January 1983 (has links)
No description available.
3

Sismologie des étoiles chaudes magnétiques / Seismology of magnetic massive stars

Buysschaert, Bram 26 April 2018 (has links)
Environ 10% des étoiles de type spectral O, B ou A ont un champ magnétique fort, détectable, stable et à grande échelle à leur surface, qui ressemble le plus souvent à un dipôle. Des modèles théoriques et des simulations numériques prédisent ces champs magnétiques vus en surface pénètrent aussi dans les zones radiatives et influencent la structure interne. Les modèles prédisent que ces champs magnétiques imposent une rotation uniforme dans les zones radiatives et peuvent supprimer la pénétration convective autour du cœur. Cela a des conséquences sur l’évolution de ces étoiles chaudes magnétiques. Pour ce faire, l’astérosismologie est la meilleure méthode car les paramètres des pulsations stellaires sont directement liés aux conditions physiques internes. Plusieurs types de pulsations stellaires sont connus et classés en fonction de leur force de rappel. Parmi eux, les plus à même de sonder les régions proches du cœur des étoiles, sur lequel se concentre notre intérêt dans cette thèse sont les modes de gravité, qui sont gouvernés par la force d’Archimède.Notre premier objectif était d’identifier des étoiles chaudes, pulsantes et magnétiques et de caractériser leurs propriétés magnétiques et sismiques. Des étoiles ont été sélectionnées grâce à des diagnostics observationnels indirects de la présence d’un champ magnétique qou nous confirmons grâce à de la spectropolarimétrie optique à haute résolution obtenue avec ESPaDOnS, Narval et ESPaDOnS. Pour deux étoiles magnétiques connues, HD43317 et o Lup, nous avons caractérisé la géométrie et l’intensité du champ magnétique aves des séries temporelles spectropolarimétriques. Pour toutes les étoiles de notre échantillon, nous avons également obtenu des séries temporelles photométriques très précises grâce aux télescopes spatiaux BRITE, CoRoT ou K2 pour étudier leur variabilité (périodique) cohérente. Seulement HD43317 a révélé des dizaines de fréquences de pulsations stellaires, pointant plutôt vers des modes de gravité.Nous nous sommes ensuite concentrés sur HD43317 dans pour déterminer observationellement la structure interne de cette étoile magnétique chaude. Nous avons fait usage de modélisation sismique: les fréquences des modes de pulsations observées dans les données CoRoT, couvrant 150j, ont été ajustées à celles des modes gravito-inertiels calculés avec le code de pulsations GYRE couplé aux modèles MESA. Nous avons pu associer les fréquences des modes de pulsations à des séries de modes (l,m) = (1,−1) et (2,−1) se chevauchant. La petite zone de pénétration convective dans la zone radiative telle que déduite du modèle MESA optimal s’avère cohérente avec les prédictions théoriques. Néanmoins, les intervalles de confiance sur certains paramètres physiques issus des modèles sont très larges et compatibles avec les valeurs de la littérature pour des étoiles chaudes et pulsantes mais non-magnétiques. Nous en concluons que la série temporelle de 150j de données CoRoT est trop courte pour déterminer d’une manière non-équivoque la structure interne des étoiles magnétiques chaudes, et par conséquent pour distinguer leur structure interne de celle des étoiles chaudes non-magnétiques.Malgré nos efforts de modélisation détaillée de la meilleure étoile chaude pulsantemagnétique HD43317, nous n’avons pas pu corroborer observationnellement les prédictions théoriques d’une structure interne altérée pour les étoiles chaudes magnétiques. Des simplifications et des approximations ont dû être faites au cours de la modélisation sismique en raison de la résolution en fréquence limitée des données CoRoT. D’autres efforts pour inclure le magnétisme dans les codes de pulsations ou le magnétisme, la rotation et le transfert du moment cinétique dans les modèles d’évolution stellaire seront nécessaires afin de déterminer si les signatures magnétiques sont présentes pour les nombreux pulsateurs gravito-inertiels récemment découverts dans la base de données de Kepler. / About ten percent of stars with spectral type O, B or A have a detectable stable strong large-scale magnetic field at their surface, which most often resembles a magnetic dipole. These large-scale magnetic fields extend into the radiative layers of the OBA stars. Theory and simulations predict that they alter the internal structure and physical properties of these stars. In particular, it is expected that these large-scale magnetic fields enforce uniform rotation in the radiative layers and may suppress convective core overshooting. This has consequences for the evolution of these magnetic hot stars and it has implications for galactic evolution. Therefore, we observed and investigated the internal structure of magnetic hot stars. To do so, asteroseismology is the best method as the oscillation properties are directly related to the internal physical conditions. Various types of stellar oscillations are known and they are classified based on their dominant restoring force. Of these, gravity modes are governed by the buoyancy force and have their strongest probing power in the near core region, which is the domain of our interest.Our first objective was to identify pulsating magnetic hot stars and characterize their magnetic and seismic properties. We constructed a sample of magnetic candidate stars, by following indirect observational diagnostics for the presence of a large-scale magnetic field, to confirm with ground-based high-resolution optical spectropolarimetry taken with ESPaDOnS, Narval or HARPSpol. For two known magnetic stars, HD43317 and o Lup, we characterized the geometry and strength of the field in detail by analysing spectropolarimetric time series. For each star in our sample, we obtained high-cadence high-precision space-based photometry from BRITE, CoRoT, or K2 to study (periodic) variability. Only HD43317 revealed tens of stellar pulsations mode frequencies that pointed towards gravity modes. Only a few other stars studied showed a few pulsation mode frequencies, unsuitable for seismic modelling.We investigated the B3.5V star HD43317 in detail to determine the internal structure of a magnetic hot star. We did this by forward seismic modelling, where observed stellar pulsation mode frequencies in the CoRoT data covering ∼150d were fit to those of gravito-intertial modes computed with the pulsation code GYRE, coupled to MESA stellar structure models. We identified the pulsation mode frequencies as overlapping (l, m) = (1,-1) and (2,-1) mode series. The small convective core overshooting region derived from the seismic modelling was in line with the theoretical predictions. Yet, some of the parameters for the best fitted models were also compatible with literature values for non-magnetic pulsators within the derived uncertainties. We conclude that the CoRoT time series of ∼150d is too short to lead to stringent constraints and tests of the stellar interior to discriminate between magnetic and non-magnetic pulsating hot stars.From our detailed modelling efforts of the best studied pulsating magnetic hot star HD43317, we were unable to observationally corroborate the theoretical predictions of an altered internal structure for magnetic hot stars. Simplifications and approximations were made during the forward seismic modelling due to the limited frequency resolution of the CoRoT data in terms of its time base. Further efforts to include magnetism in the pulsation codes, or magnetism, rotation, and angular momentum transport in the evolutionary models, are worthwhile to test whether magnetic signatures are present in the numerous (non-magnetic) gravito-inertial pulsators recently found in the nominal Kepler database (which has a ten times better frequency resolution compared to CoRoT).
4

Effects of stellar surface inhomogeneities on astrometric accuracy / Effets des inhomogénéités de surface stellaire sur la précision astrométrique

Pasquato, Ester 13 September 2011 (has links)
Surface brightness asymmetries are a very common feature of stars. Among other effects they cause a difference between the projected centre of mass and the photocentre. The evolution of those surface features makes this difference time-dependent. In some cases the displacement can be a non-negligible fraction of the star radius R, and if R>1 AU, of the parallax. We investigate the impact of surface brightness asymmetries on the Gaia astrometric solution and on the data processing flow. In particular we derive analytical expressions for the change in the derived astrometric parameters for a single-star, with respect to the parameters for a uniformly-bright star, as a function of the characteristics of the surface brightness asymmetries. These predictions are confirmed by the results of the processing of simulated astrometric Gaia data where a photocentre motion caused by surface brightness asymmetries has been added using a Gaussian Markovian model.<p>In the case of a red supergiant star, the average photocentre shift is about 0.1 AU. Such a photocentric noise translates in a 10% inaccuracy on the parallax (independently of the distance), which becomes larger than the statistical error on the parallax derived from the data reduction for stars that are up to about 4 kpc away. For the most nearby stars, we derive an inaccuracy on the parallax that can be 10 times its statistical error. Finally we estimate that up to about 4000 stars among red supergiants and bright giants may have astrometric parameters that are inaccurate at levels bigger than expected because of the surface brightness asymmetries. In the determination of this number, a crucial role is played by the Gaia observable magnitude range. The fact that Gaia will not observe stars brighter than 5.6 in the Gaia G band means that the closest stars will not be observed. Yet, the impact of the surface brightness asymmetries is proportional to their angular size, meaning that the stars whose astrometric accuracy would be most affected are not observed.<p>Various non-Gaussian spot models (as applicable in the case of magnetic spots) have been implemented and analytical predictions for the effects of such magnetic spots are computed for the most representative classes of magnetic stars.<p>Another effect of the presence of surface brightness asymmetries is their impact on Gaia data processing flow. The quality of the fit of the data is evaluated with the F2 parameter that is a transformation of χ2 such that it has a unit normal distribution when the model is adequate and it is independent of the number of measurements. If the goodness-of-fit F2 of the single-star solution is not good enough (F2>3), a chain of solution of growing complexity is tried until a satisfactory one (with F2<3) is obtained. If no good solution is found, a so-called stochastic solution is computed where a "cosmic" error is added to the data in order to obtain a single-star solution with F2=0. We show that the photocentre noise induces an increase in the goodness-of-fit parameter, causing this chain of solutions to be entered. Depending on the characteristics of the photocentre noise, a variable fraction of the stars in our simulations end up with a non-single-star solution. Yet, we show that these (orbital) solutions are not acceptable because non-significant or non-physical. Finally, an important fraction of stars is assigned a stochastic solution with a cosmic noise matching well the photocentric noise.<p><p>/<p><p>Les asymétries de brillance de surface sont une caractéristique commune des étoiles. Parmi d'autres effets, elles provoquent une différence entre la projection du centre de masse et le photocentre. L'évolution de ces structures de surface rend cette différence variable avec le temps. Dans certains cas, le déplacement du photocentre peut être une fraction non négligeable du rayon de l'étoile R et, si R>1 UA, de la parallaxe. Nous examinons l'impact des asymétries de brillance de surface sur la solution astrométrique de Gaia et sur le processus de traitement des données. En particulier nous dérivons des expressions analytiques pour le changement des paramètres astrométriques déerivées pour une étoile simple, par rapport aux paramètres pour une étoile uniformément lumineuse, en fonction des caractéristiques des asymétries de brillance de surface. Ces prévisions sont confirmées par les résultats de simulations du traitement des données astrométriques de Gaia, auxquelles des mouvements du photocentre causés par des asymétries de brillance de surface ont été ajoutés en utilisant un modèle gaussien markovien.<p><p>Dans le cas d'une étoile super-géante rouge, le décalage moyen du photocentre est d'environ 0.1 UA. Un bruit photocentrique de cette amplitude se traduit dans une imprécision de 10% sur la parallaxe (indépendamment de la distance), qui peut devenir plus grande que l'erreur statistique sur la parallaxe déerivée par la réduction des données, pour les étoiles plus proches d'environ 4 kpc. Pour les étoiles les plus proches, nous évaluons une imprécision sur la parallaxe qui peut être 10 fois leur erreur statistique. Finalement, nous estimons que jusqu'à environ 4000 étoiles parmi les super-géantes rouges et géantes brillantes peuvent avoir des paramètres astrométriques inexactes à des niveaux plus grands que prévu en raison des asymétries de brillance de surface. Dans la détermination de ce nombre, la gamme de magnitudes observables par Gaia joue un rôle crucial. Le fait que Gaia n'observera pas les étoiles plus brillantes que 5.6 mag (en bande Gaia) signifie que les étoiles les plus proches ne seront pas observées. Pourtant, l'impact des asymétries de brillance de surface est proportionnel à leur taille angulaire, ce qui signifie que les étoiles dont la précision astrométrique seraient la plus affecté ne seront pas observées.<p>Différents modèles de taches ont été réalisés et des prédictions analytiques pour les effets de ces taches magnétiques sont calculés pour les classes les plus représentatives des étoiles magnétiques. <p>Un autre effet de la présence des asymétries de brillance de surface est leur impact sur le traitement des données de Gaia. La qualité de l'ajustement des données est évaluée avec le paramètre F2 qui est une transformation de χ2 telle qu'il ait une distribution normale lorsque le modèle est adéquat. Si la qualité de l'ajustement F2 de la solution étoile-simple n'est pas acceptable (F2>3), une chaîne de solutions de complexité croissante est essayée jusqu'à ce qu'une solution satisfaisante (avec F2<3) soit obtenue. Si aucune solution satisfaisante n'est trouvée, une solution dite stochastique est calculée où une erreur "cosmique" est ajoutée aux données afin d'obtenir une solution étoile-simple avec F2=0. Nous montrons que le bruit du photocentre induit une augmentation de F2, ce qui provoque l'activation de cette chaîne de solutions. Selon les caractéristiques du bruit du photocentre, une solution étoile-non-simple est obtenue pour une fraction variable des étoiles dans nos simulations. Nous montrons que ces solutions (orbitales) ainsi obtenues ne sont pas acceptables car non significatives ou non-physiques. Enfin, une fraction importante d'étoiles se voient attribuer une solution stochastique avec un bruit cosmique correspondant au bruit photocentrique. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0493 seconds