• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards a Deep Reinforcement Learning based approach for real-time decision making and resource allocation for Prognostics and Health Management applications

Ludeke, Ricardo Pedro João January 2020 (has links)
Industrial operational environments are stochastic and can have complex system dynamics which introduce multiple levels of uncertainty. This uncertainty leads to sub-optimal decision making and resource allocation. Digitalisation and automation of production equipment and the maintenance environment enable predictive maintenance, meaning that equipment can be stopped for maintenance at the optimal time. Resource constraints in maintenance capacity could however result in further undesired downtime if maintenance cannot be performed when scheduled. In this dissertation the applicability of using a Multi-Agent Deep Reinforcement Learning based approach for decision making is investigated to determine the optimal maintenance scheduling policy in a fleet of assets where there are maintenance resource constraints. By considering the underlying system dynamics of maintenance capacity, as well as the health state of individual assets, a near-optimal decision making policy is found that increases equipment availability while also maximising maintenance capacity. The implemented solution is compared to a run-to-failure corrective maintenance strategy, a constant interval preventive maintenance strategy and a condition based predictive maintenance strategy. The proposed approach outperformed traditional maintenance strategies across several asset and operational maintenance performance metrics. It is concluded that Deep Reinforcement Learning based decision making for asset health management and resource allocation is more effective than human based decision making. / Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2020. / Mechanical and Aeronautical Engineering / MEng (Mechanical Engineering) / Unrestricted

Page generated in 0.1308 seconds