• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • Tagged with
  • 12
  • 12
  • 12
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Breeding investigations for resistance to Phaeosphaeria Leaf Spot (PLS) and other important foliar diseases and a study of yield stability in African maize germplasm.

Sibiya, Julia. January 2009 (has links)
Maize (Zea mays L.) yields in the smallholder (SH) farming sector in Southern Africa have remained low. despite the availability of many improved varieties. Among the major constraints contributing to tow yields and threatening food security in the region are diseases which include grey leaf spot (GLS). common rust, northern corn leaf blight (NLB) and Phaeosphaeria leaf spot (PLS). These diseases are highly unpredictable in their occurrence every season, making them difficult to control. In addition, the majority of SH farmers cannot afford to control the diseases due to limited access to chemicals. Therefore, maize cultivars with high levels of disease resistance and tolerance to abiotic stresses would provide a long-term solution to addressing the problem of low yields, especially in the smallholder-farming sector. The objectives of this study were therefore to: i) establish farmers' perceptions on diseases, key limiting production constraints and preferred traits of maize cultivars. ii) screen germplasm adapted to tropical environments for resistance to PLS, iii) determine gene action for resistance to PLS and GLS, iv) estimate combining ability effects for resistance to PLS, GLS, NLB and common rust diseases, and v) determine grain yield stability of F, hybrids derived from crosses among selected tropical advanced maize inbred lines. These studies were conducted from 2006/7 to 2008/9 seasons at various sites in South Africa, Zimbabwe, Zambia and Uganda. Structured surveys and participatory rural appraisal (PRA) conducted in Obonjaneni. Busingatha and Okhombe villages of Amazizi district in the Northern Drakensberg established maize as the principal crop grown in the area. All the farmers who participated grew the local variety (landrace) they called Natal-8- row or Is/Zulu. The adoption of hybrids and improved open pollinated varieties (OPVs) was tow. Farmers preferred the local variety ahead of hybrids and improved OPVs mainly for its taste, tolerance to abiotic stresses and yield stability. Characteristics of maize varieties preferred by the farmers included: inexpensive seed, high yield, early maturity and tow input costs. Pests/d is eases and drought were not ranked highly, as farmers planted early to escape diseases and drought. Abiotic stresses were amongst the top four constraints faced by the farmers. The local varieties exhibited high yield potential and genetic variability fordisease resistance. Evaluation of maize germplasm adapted to tropical and subtropical environments of Africa for PLS resistance indicated significant (PS0.05) variation among the inbreds. populations and hybrids. In general, 63% of the inbreds/populations were resistant to PLS. Regionally important inbred lines; SC and N3 and CIMMYT's most successful lines such as CML395. CML444. CML202. CML312. and CML488 were resistant to PLS. Fifty- four percent of the single-cross experimental hybrids were also resistant to PLS. Correlation coefficients for area under disease progress curve (AUDPC) values for disease severity with PLS final disease severity scores were significant (P<0.001) and positive, implying that ranking of the genotypes for AUDPC and final PLS disease severity score was by and large similar. Forty five F, hybrids generated by crossing ten advanced maize inbred lines in a half diallel mating scheme were evaluated in two to six environments to determine combining ability, gene action and heterosis estimates for grain yield and resistance to PLS. GLS. NLB and common rust diseases. Highly significant (PS0.001) general combining ability (GCA) and specific combining ability (SCA) effects were observed for PLS. GLS. NLB. common rust, grain yield and other agronomic traits. The GCA effects were more important than SCA effects, indicating the predominance of additive over non-additive gene action for all the traits studied in these inbred lines. The inbred lines with good GCA for PLS resistance were: A12204, N3. A16. MP18 and CML488. and for GLS resistance were A1220-4. CZL00009. CZL00001. CML205 and CML443. Lines A16 and CML443 had good GCA for NLB and common rust resistance, lines A1220-4, N3, CML205, A16, and CML443 contributed towards high yield. Lines A1220-4 and A16 were late maturing, whereas CZL00009 displayed eariy maturity. High mid-parent and better-parent heterosis for high grain yield and resistance to all the diseases were observed. Generation mean analysis was used to deteimine the inheritance of PLS and GLS resistance in populations involving six tropical advanced maize inbred lines. Reciprocal crosses and backcross progenies were generated among inbreds A1220-4, A15, B17 (resistant. R), CML445 (moderately resistant. MR). CML441 and CZL00001 (susceptible. S) for PLS inheritance, and among inbreds A1220-4. A15, CML441 (resistant. R). and N3 and B17 (susceptible. S), for GLS inheritance. Results indicated highly significant additive effects (P<0.001) for PLS and GLS resistance, with dominance effects accounting forSH%of the variation in all the crosses for PLS and only A15 x B17 cross for GLS. Epistasis and cytoplasmic gene effects in favour of PLS resistance in F, crosses when the more susceptible parent was used as female were significant. For GLS resistance, epistasis was observed only in CML441 x N3 and A1220-4 x B17 crosses, while no cytoplasmic gene effects were detected. Resistance for PLS was medium to highly heritable and conditioned by less than four genes which exhibited incomplete dominance. In general resistance to GLS was controlled by two to three genes exhibiting zero to partial dominance and was moderate to highly heritable. Stability analysis of the hybrids was done over 11 environments using the additive main effects and multiplicative interaction (AMMI) and the genotype and genotype by environment (GGE) biplot analyses. Both AMMI and GGE biplot analyses selected hybrids H21 (CZL00009 x A16). H14 (A1220-4 x A16). S63 (SeedCo hybrid check). N72 (MP72/N3) and H26 (CZL00001 x A16) as stable and high yielding. Hybrids H1 (CML445 x A1220-4), H44 (CZL00009 x CML443) and H18 (CZL00009 x CZL00001) were identified by both methods as unstable but high yielding. AMMI and GGE biplot analyses identified ZAM08, C108, RAO9 and C09 as the most representative environments which were high yielding and relatively stable. In general, the study has revealed that based on the farmers ranking of the constraints in their area, breeding opportunities do exist for incorporating tolerance to both biotic and abiotic stresses in their varieties. It also identified maize lines resistant to the main foliar diseases, with good combining ability and heterosis for resistance and high grain yield. Hybrids with wide adaptation and high yields across environments were also observed. The experimental hybrids that exhibited high levels of resistance can be recommended for further testing and release. On the whole, highly significant additive effects and moderate to high heritability estimates observed for all the diseases and grain yield implied progress would be made through selection, although significant epistasis and dominance could slow progress. Dominance effects towards resistance and high yield could be exploited in developing single cross maize hybrids among these inbreds when only one parent is resistant. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.
12

Characterization and genetic analysis of maize germplasm for resistance to northern corn leaf blight disease in Tanzania.

Bucheyeki, Tulole Lugendo. January 2012 (has links)
The majority of farmers in Tanzania have not yet adopted modern maize varieties and still cultivate landraces and open pollinated varieties (OPVs) with low production potential and susceptible to diseases like maize streak virus (MSV), grey leaf spot (GLS) and northern corn leaf blight (NLB). The NLB disease is among the major causes of low yield and has been reported in all 21 maize growing regions in Tanzania. Breeding for host plant resistance with high yielding potential and involving the community in the breeding process is expected to address the problem of low yield, NLB disease susceptibility and low rate of F1 hybrid adoption. Therefore, the study was conducted to obtain additional sources of resistance to NLB disease, high yielding cultivars with community acceptable traits adapted to Tanzanian conditions. The main objective was to contribute to increased maize productivity in the western zone of Tanzania. The specific objectives of this study were therefore to : 1) investigate maize production limiting factors for smallholder farmers in western Tanzania, 2) identify farmers and stockist perceptions, opinions and maize variety selection criteria in western Tanzania, 3) establish NLB disease status in farmers’ fields of western Tanzania, 4) determine the genetic relationships among landraces and assess maize landraces as sources of breeding materials, 5) determine the combining ability and heterosis for NLB disease resistance of eleven maize inbred lines adapted to Tanzanian conditions, and 6) determine the gene action and inheritance of resistance to NLB disease in five maize inbred lines adapted to Tanzanian conditions. The study was conducted from 2008-2011 in three diverse environments which represent all the maize growing regions in the country The participatory rural appraisal (PRA) was conducted in three districts to investigate farmers’ and stockists preferred traits for maize selection in western Tanzania, determine maize production constraints facing farmers and assess NLB disease prevalence in the same area. A focus group of 30 farmers was selected in each of the three villages. Transect walks, wealth ranking and historical profiles were used in an informal survey. One hundred and fifty questionnaires were used in a formal survey. The recorded yield was only 1 t haˉ¹. Thirteen major maize production constraints, 13 insect pests and vermin and, 11 diseases were recorded. The NLB disease was reported to be increasing in severity in all farmers’ fields. Farmers’ preferred traits included resistance to abiotic and biotic stresses, early maturity, preferred milling qualities, high storage qualities and high yielding potential. Stockists mentioned 12 preferred maize variety traits which included high yielding, disease and insect pest resistance, heavy grain, large cob size and large grain sizes. Similarity between farmers and stockist variety preference ranking were found to exist. The occurrence and distribution of northern leaf blight (NLB) disease study was conducted to assess the incidence and severity of NLB disease in farmers’ fields in seven districts. The study was conducted for two seasons. In each season, 175 fields with 5600 plants were sampled. There were sixteen varieties grown with wide NLB disease reaction variation. Gembe, a landrace, was among the three observed resistant varieties. The NLB disease has changed its distribution pattern affecting all districts of the western zone. The disease incidence in season two (2009/2010) significantly increased from season one (2008/2009) t= -3.25 (348), P= 0.001. About 30% of both means of blight incidence and severity were recorded in the area. Characterization and screening of maize landraces for northern leaf blight disease resistance was conducted to determine the genetic relationships among landraces, assess maize landraces as sources of NLB disease resistance and assess important agronomic traits for future maize improvement. Ninety breeding materials consisting of 71 landraces and 19 commercial varieties were evaluated. The average yield of landraces under research management was 2.3 t haˉ¹. Landrace TZA 3075 was identified as NLB disease resistant. Yield potential, dent grain texture, white endosperm and husk cover were important agronomic traits observed among landraces. There were high variations in terms of morphology and NLB disease resistance among the landraces. Five principal components contributed to 71.98 % of total variation. Clusters analysis revealed five distinct groups of landraces. Leaves/plant, infested leaves/plant, lesion number, lesion length, lesion width and NLB disease incidence traits highly contributed to variation and grouping of landraces. Combining ability analysis for northern leaf blight disease resistance was conducted to estimate the combining ability for NLB disease resistance of 11 maize inbred lines adapted to Tanzanian conditions, determine maternal effects which are involved in NLB disease resistance in maize germplasm, and determine the heterosis in the F1 hybrids. A full 11 x 11 diallel cross was performed. All top ten experimental hybrids in each of the three sites had negative midparent heterosis for NLB disease severity. The overall mid-parent heterosis means for yield across sites was 152%. The mean sum of squares for GCA was highly significant (P< 0.001) on disease severity indicating additive gene action effects. Mean sum of squares for SCA were highly significant for disease severity and yield implying non-additive gene action effects. The mean squares for reciprocal effects were highly significant on yield and non-maternal sum of squares had significant effect (P<0.05) on yield. The GCA contribution was high for disease severity (91%) and lesion number (85%). Almost, all GCA effects for NLB disease resistance were negative implying contribution to disease resistance. Due to preponderance of the additive gene action, recurrent selection could be used to improve the resistance of inbred lines while the non-additive gene action could be exploited in breeding for disease resistant hybrids. Generation mean analysis of northern leaf blight disease resistance was conducted to determine the mode of gene action involved in the inheritance of resistance to NLB disease in five inbred lines adapted to Tanzania at contrasting environments, estimate heterosis and heritability in five tropical inbred lines. Generation mean analysis was conducted using a six parameter model comprising P1, P2, F1, F2, BCP1 and BCP2 generation progenies. The mean sum of squares for environment, replication with the nested environment, generations, generations x environment interactions were highly significant (P<0.001). The full model of additive, dominance, additive x additive and additive x dominance epistatic effects was highly significant (P<0.001). Nonetheless, the additive gene effects were predominant ranging between 57% and 89% which was matched by large heritability (54%-85%). The average degree of dominance ranged between -0.52 and 0.88 supporting observations of partial dominance. The NLB disease severity showed a continuous distribution in all three sets for F2, BCP1 and BCP2 populations which is an indication of quantitative nature of inheritance and additive gene effects. The mid parent heterosis ranged from -19 to 1%. Therefore, resistance to NLB disease could be improved through selection by exploiting the additive gene effects. The epistatic gene effects would cause less complications because they were negligible (<25%). The client oriented breeding for maize northern leaf blight disease resistance was carried out to perform farmers and stockists assessment on the 110 F1 experimental maize hybrids and compare them with breeders selection criteria. Breeders selection criteria ranked 10 top high yielding experimental hybrids. Farmers developed 14 while stockists developed 13 selection criteria. The most preferred hybrids by farmers were VL 05616 x CML 159, CML 159 x KS03- 0B15-47 and EB04-0A01-304 x CML 442 while stockists preferred VL 05616 x CML 395, EB04-0A01-304 x CML 442 and VL 05616 x CML 159. Two F1 experimental hybrids EB04- 0A01-304 x CML 442 and CML 159 x CML 442 appeared in all top five ranked hybrids by breeders, farmers and stockists. Generally, findings showed that, farmers, stockists and breeders coincide in some selection criteria but also differ in other cases. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.

Page generated in 0.1269 seconds