• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Complexity of Several Mal'tsev Condition Satisfaction Problems / Mal'tsev Condition Satisfaction Problems

Rooney, J P January 2020 (has links)
In this thesis we derive novel results on the complexity of idempotent Mal'tsev condition satisfaction problems. For a Mal'tsev condition M, the idempotent M- satisfaction problem is the decision problem defined via: INPUT: A finite idempotent algebra A. QUESTION: Does A satisfy M? In particular we are able to prove that this decision problem is in the complexity class NP whenever M satisfi es one of the following conditions: 1. M is a strong Mal'tsev condition which implies the existence of a near unanimity term. 2. M is a strong Mal'tsev condition of height < 1 (see Definition 5.1.1). As a porism of these two results, we are able to derive the stronger result that the complexity of the idempotent M-satisfaction problem is in NP whenever M is a strong Mal'tsev condition which implies the existence of an edge term. On top of this we also outline a polynomial-time algorithm for the idempotent M-satisfaction problem when M is a linear strong Mal'tsev condition which implies the existence of a near unanimity term. We also examine the related search problem in which the goal is to produce operation tables of term operations of the algebra A which witness that A satisfies the Mal'tsev condition M whenever such terms exist (and otherwise correctly decide that such terms do not exist). We outline polynomial-time algorithms for this search problem for various strong Mal'tsev conditions. We close the thesis with a short list of open problems as suggested directions for further research. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.1432 seconds