Spelling suggestions: "subject:"maladie d’alzheimer -- étiologie"" "subject:"maladie d’alzheimer -- ätiologie""
1 |
Impact de l'excitotoxité glutaminergique sur la pathologie amyloïde et le rôle des différents sous-types de monocytes sanguins dans ce processusTremblay, Yannick 24 April 2018 (has links)
De nombreux processus sont responsables du bon fonctionnement de l’organisme vivant. Ce dernier est entre autres muni de mécanismes de défense, de nettoyage et de régulation afin de maintenir son environnement en équilibre. Lorsque l’un ou plusieurs de ces mécanismes font défaut, à un où différents niveaux, certaines pathologies cliniques peuvent subvenir. C’est le cas notamment de la maladie d’Alzheimer (MA), la cause majeure de démence à travers le monde. Elle est caractérisée par l’enchevêtrement neurofibrillaire et/ou l’accumulation de la protéine amyloïdebêta (Aβ) dans le parenchyme du cerveau. Appelée pathologie amyloïde, cette dernière est l’hypothèse de loin la plus discutée dans la littérature scientifique tentant d’expliquer la MA et présume sa cause par la défaillance d’élimination de ce peptide neurotoxique. Un autre joueur crucial dans la progression de la maladie est l’excitotoxicité glutaminergique, défini comme une excitation excessive des récepteurs neuronaux. Pouvant être induite par l’Aβ, l’excitotoxicité cause une partie de la neurodégénérescence. L’interaction entre ces deux phénomènes pourrait contribuer aux déficits cognitifs associés à la MA, tels que la perte de mémoire, les défaillances émotionnelles et les troubles comportementaux. L’étude présentée dans ce mémoire investigue les effets de la mort neuronale à la suite d’un dommage excitotoxique sur la progression de la maladie, s’attardant aux troubles cognitifs et moteurs, à la progression de la pathologie amyloïde de même que les fonctions des cellules immunitaires (monocytes et microglies). L’acide kainique (KA), un analogue conformationnel du glutamate, fut utilisé chez des souris au génotype « wild type » (WT) ou transgénique reproduisant la MA (APP/PS1swe) de par la surproduction d’Aβ. L’injection unilatérale dans le striatum cause une détérioration de la santé générale de l’animal, de même que des troubles cognitifs et comportementaux, exacerbée chez la souris APP/PS1 comparativement au groupe contrôle. Après une lésion au KA, une diminution du nombre total de monocytes chez les souris MA en comparaison aux souris WT est aussi observée, entraînant conjointement un nombre de plaques et niveaux soluble d’Aβ augmenté. Conséquemment avec la diminution des microglies, un nombre moins important de ces cellules immunitaires furent associées aux plaques. Ensemble, ces résultats suggèrent que les dommages excitotoxiques chez le modèle de souris Alzheimer déclenchent une accélération de la maladie, des déficits comportementaux et cognitifs plus importants, de même que des niveaux de la protéine toxique Aβ plus élevé. Ceci serait probablement dû à l’impact de l’excitotoxine sur le système immunitaire et particulièrement sur l’appauvrissement de la quantité de microglies et monocytes. Par conséquent, l’élimination de l’Aβ semble être affectée par les neurones en dégénérescence provoque l’aggravation de la pathologie amyloïde. / A large number of processes are responsible for the proper functioning of living organisms. These are provided among others by mechanisms for self defence, cleaning and regulation in order to maintain the environment stable. When one or more of these mechanisms are lacking, some clinical pathology can occurs. This is the case of Alzheimer’s disease (AD), the major cause of dementia worldwide. It is characterized by neurofibrillary tangles and/or the accumulation of amyloid beta (Aβ) in the brain. The amyloid pathology hypothesis is by far the most talked about in scientific literature trying to explain AD and presumed it to be caused by a defective elimination of this neurotoxic peptide. Another substantial player for disease progression is glutamate excitotoxicity, defined as over excitation of neuronal receptor. Being exarcebated by Aβ, excitotoxicity causes a part of the neurodegeneration. The interplay of these two phenomena might contribute to cognitive deficits in AD, such as memory loss, emotional failures and behavioural disorders. The study presented in this memoir investigates the effects of neuronal death following an excitotoxic insult the progression of the illness, focusing on cognitive and motor deficits, the progression of the amyloid pathology as well as the immune cells functions (microglia and monocyte). Kainic acid (KA), a conformational analog of glutamate, was unilaterally injected in the striatum of wild type or transgenic AD mice (APP/PS1) overproducing Aβ. The injections caused a general deterioration of the health of the mice as well as behavioural and cognitive deficits that were exacerbated in APP/PS1 mice compared to their control. We observed a decrease in the total number of monocytes in AD mice, leading to an increase of the number of Aβ plaques and soluble Aβ in KA-lesioned APP/PS1 mice compared to their sham. Consistently with the decrease of microglia, a smaller number of immune cells was associated with the plaques. Taken together, these results suggest that excitotoxic insult in an AD mouse model triggers an acceleration of the disease with the behavioural and cognitive impairments as well as an increment in the levels of the toxic protein Aβ. Likely, these is due to the impact of the excitotoxin on the immune system and in particular on the decreased levels of microglial cells as well as monocytes Thus, the clearance of Aβ seems affected by dying neurones resulting in the worsening of the amyloid pathology.
|
Page generated in 0.0767 seconds