• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 19
  • 19
  • 19
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Erythrocyte invasion by Plasmodium falciparum

Jones, Matthew L. January 2009 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2009. / Title from PDF title page (viewed on Feb. 10, 2010). Includes bibliographical references.
12

Epidemiological impact of the large scale deployment of early diagnosis and combination treatment of falciparum Malaria on the Northwestern border of Thailand; the Tak Malaria initiative /

Carrara, Verena Ilona, Pratap Singhasivanon, January 2006 (has links) (PDF)
Thesis (Ph.D. (Tropical Medicine))--Mahidol University, 2006. / LICL has E-Thesis 0014 ; please contact computer services. LIRV has E-Thesis 0014 ; please contact circulation services.
13

Understanding the Role of Plasmodium falciparum VAMP8 SNARE Homologue

Ferreira, Katherine 01 January 2013 (has links)
Malaria is one of the worlds most deadly infectious diseases and results in almost a million deaths each year, largely in children under the age of five in Sub-Saharan Africa. Outside Africa, malaria is responsible for a large number of cases in the Amazon rainforest of Brazil, Middle East, and in some areas of Asia [37]. According to the World Health Organization, there was an estimated 655, 000 deaths from malaria in 2012. Malaria is caused by a eukaryotic Apicomplexan parasite, Plasmodium, which has three distinct life cycles occurring in the midgut of the female Anopheles mosquito, the liver of the human host, and human erythrocytes. When the parasite infects the erythrocyte, some induced cell host modifications are made in order to accommodate growth. During its intra-erythrocytic life cycle, the malaria parasite traffics numerous proteins to a set of unique destinations within its own plasma membrane including the digestive vacuole, the apicoplast, rhoptries, and micronemes. Vesicular transport is an essential process in eukaryotic cells. This coordinated process is responsible for moving thousands of proteins between compartments within the cell. Essential to the targeting and fusion of protein transport vesicles in eukaryotes are SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors), a family of fusogenic proteins that are localized to distinct intracellular compartments [11]. Studies performed in our laboratory have identified 18 proteins putatively belonging to the PfSNARE family [2]. To date the exact role of PfSNAREs in the unique trafficking pathways of malaria is undetermined. Of particular interest to our study is PfVAMP8. In model eukaryotic organisms, VAMP8 containing vesicles deliver cargo to lysosomes and are involved in endocytosis. The food vacuole of the parasite is very similar to that of lysosomes and is essential to parasite survival. The study aims to identify the organelle(s) to which PfVAMP8 is localized and characterize membrane-association properties of this parasite’s R-SNARE protein. We believe that PfVAMP8 would localize to unique compartments in the parasite protein network flow. An in depth understanding of its mechanisms and localizations could be a key in developing novel anti-malarials. This study aims to identify the organelle(s) to which PfVAMP8 are localized, determine the trafficking determinants of this protein and determine this proteins’ expression and membrane association during the intra-erythrocytic stages of Plasmodium falciparum. Our immunofluorescence studies with known biological markers reveals that, PfVAMP8 passes through the endoplasmic reticulum, Golgi, and localizes to the food vacuole during trophozoite and schizont stage. Further characterization of the membrane association properties of the protein in this study reveals that PfVAMP8 is a soluble integral membrane protein with amphipathic characteristics.
14

Antigenic variation and its evolution in P. falciparum malaria

Noble, Robert John January 2014 (has links)
This thesis investigates antigenic variation and its evolution in Plasmodium falciparum, the cause of the most deadly form of human malaria. Antigenic variation is a strategy for evading immunity by switching between antigenic variants during infection. In P. falciparum, such variable antigens confer different binding phenotypes that may affect parasite survival and have also been linked to pathology. Here, a new statistical method is described for determining the switching patterns that underlie antigenic variation. This method is then applied to experimental data to yield a full description of an antigenic switching network in P. falciparum. In light of the findings, theoretical modelling is used to show how immune selection and binding phenotypes may have contributed to the evolution of antigenic repertoire structure, expression order and virulence. Related models are also used to investigate parasite population diversity, providing possible explanations for observations reported here and elsewhere, with implications for vaccine design. Together, these chapters advance understanding of P. falciparum immune evasion and how it relates to pathology. This work further reinforces the role of host immunity in shaping pathogen population diversity at multiple levels.
15

Auswirkungen plazentarer Plasmodium falciparum-Infektionen primigravider Mütter auf die Ausbildungeiner Immunantwort bei Neugeborenen

Brenner, Stephan, January 2006 (has links)
Tübingen, Univ., Diss., 2006.
16

Monoclonal antibody based ELISA for the detection of P. falciparum and P. vivax antigens in Malaria endemic populations in southern Nepal /

Hari Har Joshi, Srisin Khusmith, January 2003 (has links) (PDF)
Thesis (Ph.D. (Tropical Medicine))--Mahidol University, 2003.
17

Screening Indian plant species for antiplasmodial properties – ethnopharmacological compared to random selection.

Kantamreddi, Venkata Siva Satya Narayana, Wright, Colin W. 01 1900 (has links)
no / In the search for biologically active plant species, many studies have shown that an ethnopharmacological approach is more effective than a random collection. In order to determine whether this is true in the case of plant species used for the treatment of malaria in Orissa, India, the antiplasmodial activities of extracts prepared from 25 traditionally used species were compared with those of 25 species collected randomly. As expected, plant species used traditionally for the treatment of malaria were more likely to exhibit antiplasmodial activity (21 species (84%) active against Plasmodium falciparum strain 3D7) than plant species collected randomly (9 species (32%)). However, of the nine active randomly collected species, eight had not previously been reported to possess antiplasmodial activity while one inactive species had been reported to be active in another study. Of the 21 active species of traditional antimalarial treatments, only six had been reported previously. This study suggests that while the selection of traditional medicinal plants is more predictive of antiplasmodial study, random collections may still be of value for the identification of new antiplasmodial species.
18

Establishment of an Expression and Purification System for Plasmodium falciparum Multi Drug Resistance (pfmdr) Transporter

Beniamin, Armanos January 2007 (has links)
Malaria is a life threatening parasite disease caused and transmitted by infected female anopheles mosquito. However, the parasite, Plasmodium falciparum, has become resistant to most anti malarial drugs, such as chloroquine, which contributes to fever and anaemia because of its ability to digest the haemoglobin in the red blood cells. The aims of this project were to establish whether “Bac to Bac” Baculoviral Expression System is suitable for expression of pfmdr 1 gene and for purification of the pgh 1 protein. The pfmdr 1 gene encodes an ABC transporter protein, pgh 1, fixed in the cell membrane of the Plasmodium falciparuum gut, which assist in elimination of drug compounds. Furthermore, “Bac to Bac” Baculoviral Expression System uses vectors with histidine tags to clone the pfmdr 1 gene and subsequently transform these into DH10Bac cells to produce the recombinant bacmid DNA. Since pfmdr 1 gene is an AT-rich sequence, PCR was optimized, by lowering the annealing and extension temperature to 47Co and 66Co respectively. The results show that “Bac to Bac” Baculoviral Expression System can be used to express the pfmdr 1 gene, though further experiments has to be performed.
19

Establishment of an Expression and Purification System for Plasmodium falciparum Multi Drug Resistance (pfmdr) Transporter

Beniamin, Armanos January 2007 (has links)
<p>Malaria is a life threatening parasite disease caused and transmitted by infected female anopheles mosquito. However, the parasite, Plasmodium falciparum, has become resistant to most anti malarial drugs, such as chloroquine, which contributes to fever and anaemia because of its ability to digest the haemoglobin in the red blood cells. The aims of this project were to establish whether “Bac to Bac” Baculoviral Expression System is suitable for expression of pfmdr 1 gene and for purification of the pgh 1 protein. The pfmdr 1 gene encodes an ABC transporter protein, pgh 1, fixed in the cell membrane of the Plasmodium falciparuum gut, which assist in elimination of drug compounds. Furthermore, “Bac to Bac” Baculoviral Expression System uses vectors with histidine tags to clone the pfmdr 1 gene and subsequently transform these into DH10Bac cells to produce the recombinant bacmid DNA. Since pfmdr 1 gene is an AT-rich sequence, PCR was optimized, by lowering the annealing and extension temperature to 47Co and 66Co respectively. The results show that “Bac to Bac” Baculoviral Expression System can be used to express the pfmdr 1 gene, though further experiments has to be performed.</p>

Page generated in 0.0757 seconds