11 |
The complexity of Plasmodium falciparum infections in children in western Kenya /Grills, Ardath White January 2006 (has links) (PDF)
Thesis (Ph.D.)--Uniformed Services University of the Health Sciences, 2006 / Typescript (photocopy)
|
12 |
Genetic and biochemical strategies to block the transmission cycle of the malaria parasitePurcell, Lisa A. January 2007 (has links)
No description available.
|
13 |
Assessment of novel liver-stage vaccines using transgenic rodent malaria parasitesSalman, Ahmed Mahmoud Ahmed A. January 2014 (has links)
No description available.
|
14 |
Immune responses to vaccines against malariaBliss, Carly May January 2017 (has links)
The development of a malaria vaccine is necessary for disease eradication. Successful vaccine candidates to date have targeted the asymptomatic, pre-erythrocytic stage of the disease, however even the most efficacious vaccines are only partially protective. Research undertaken in our laboratory has demonstrated that one such regimen, using an 8 week prime-boost viral vector approach of ChAd63 ME-TRAP and MVA ME-TRAP, induces sterile efficacy in 21% of vaccinees, with a key role identified for TRAP-specific CD8<sup>+</sup> T cells. The work described in this thesis explores the most immunogenic regimen by which to administer these two pre-erythrocytic malaria vaccines. A shortening of the prime-boost interval from 8 to 4 weeks, and the addition of an extra ChAd63 ME-TRAP priming vaccination, both demonstrated improved T cell immunogenicity over the standard 8 week regimen. Further to this, novel assays were developed to aid the evaluation of vaccine-induced immune responses. Adaptations of the existing methodology for ELISpot analysis and to whole blood flow cytometry techniques, enabled more detailed analyses of paediatric vaccine-induced T cell responses in The Gambia. This work also permitted the comparison of vaccine immunogenicity in this paediatric population, with malaria-naïve and malaria-exposed adult vaccinees. The results suggest that vaccine-induced T cell responses in infants of 8 weeks and older are comparable to that of adults. A second approach involved the development of a novel functional assay. This assay quantitatively measured the in vitro inhibition of intrahepatic Plasmodium parasite development using T cells from ChAd63.MVA ME-TRAP vaccinated volunteers. The assay demonstrated the ability of CD8<sup>+</sup> T cells to inhibit parasite development in a TRAP-specific manner, and provides a platform with which to further explore pre-erythrocytic immune responses.
|
Page generated in 0.0134 seconds