• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ecology of breeding sites and insecticide resistance of the potential malaria vectors in Mpumalanga Province, South Africa

Mbokazi, Manzane Frans 28 May 2015 (has links)
Thesis (M.Sc.(Med.))--University of the Witwatersrand, Faculty of Health Sciences, 2013.
2

Impact of changed feeding behaviour of An. funestus on malaria transmission in southern Tanzania

Azizi, Salum January 2012 (has links)
A research report submitted to the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Biology and Control of African Disease Vectors. Johannesburg, February 2012 / In Tanzania both Anopheles funestus and An. gambiae s.l. play a role as major vectors of malaria. Different species exist in the An. funestus group and the An. gambiae complex and play different roles in disease transmission. For malaria vector control programmes knowledge of vector species and their behaviour is key. A recent report on increased exophagy of An. funestus in southern rural Tanzania as a response to increased use of insecticide treated bed nets raised the question of whether there was misidentification of species and/or behavioural insecticide resistance playing a part. The present study used molecular tools to identify the species and determine human biting rates indoors and outdoors along with development and field evaluation of a new tool for sampling malaria vectors which is more effective than human landing catches. The results showed that the majority (96.2%) of the An. funestus group that were collected were An. funestus s.s. by PCR assay. Also, the exophagic proportion (45.9%) of An. funestus was lower than the endophagic proportion (54.1%), similar to other places in Africa, although in this study the difference was insignificant when untreated bed nets and treated bed nets were used. In addition, there was significant outdoor biting activity early in the evening that could lead to the malaria transmission cycle being unaffected by ITNs. The new trap, “Sticky Bucket Trap”, caught considerably fewer mosquitoes (14.2%) than that caught by human landing catches (85.8%), with statistical significance of P>0.05. These results imply that the sticky bucket trap is not a suitable substitute for human landing catches and some modifications are needed to make it more effective. Whereas indoor and outdoor proportions insignificant difference in feeding preference imply that both indoor and outdoor interventions should be used to control this vector.
3

Fitness assessments of Anopheles arabienesis laboratory colonies from Southern Africa and their suitability for the sterile insect technique

Essop, Leyya 13 April 2015 (has links)
In order to employ the Sterile Insect Technique (SIT), biologically fit mosquitoes able to compete with their wild counterparts, suitable field sites for mass release of sterilized male mosquitoes, and appropriate methods of rearing genetic sex-separation (GSS) mosquito strains are required. The life history traits and biological fitness of four laboratory-reared, southern African Anopheles arabiensis strains were investigated. Despite being colonized at different times, the four strains demonstrated comparable levels of biological fitness. Three sites in the Kruger National Park were assessed as possible SIT field sites. Mosquito collections were conducted at each site during three summer months. Anopheles arabiensis was predominant at Malahlapanga during each collection period, establishing Malahlapanga as the most appropriate site for SIT field trials. A standard larval diet was shown to be appropriate for rearing An. arabiensis GSS. This work formed the laboratory basis for the evaluation of a SIT strategy for South Africa.
4

Insecticide resistance and Bionomics in laboratory reared and field caught Anopheles funestus Giles (Diptera: Culicidae)

Spillings, Belinda Lea 23 January 2013 (has links)
Malaria is transmitted by the mature, blood feeding portion of mosquito vector populations. Malaria vector control programs based on indoor residual spraying (IRS) of insecticides are designed to target resting adult Anopheles mosquitoes before or after they have blood fed. When a female mosquito acquires a blood meal, she could also ingest harmful xenobiotics that are present in the blood. During the resting period after feeding, many processes are initiated in order to assist in the digestion and assimilation of the blood. Ultimately, this enables the mosquito to absorb those amino acids needed for the biosynthesis of yolk proteins, which are essential for subsequent egg maturation. Since the regulation of xenobiotic (including insecticides) detoxification enzyme systems is likely to be altered in response to the ingestion of blood, this study aimed to investigate the effect of a blood meal on insecticide tolerance in insecticide resistant and susceptible southern African strains of the major malaria vector Anopheles funestus. Through the use of CDC bottle bioassays it was demonstrated that blood fed An. funestus carrying a pyrethroid resistant phenotype are even more tolerant of pyrethroid intoxication than their unfed counterparts. Using another major malaria vector, An. gambiae, microarray analysis revealed that a general increase in delta class glutathione-s-transferase (GST) expression occured in response to a blood meal. One gene, GSTD3, was over-expressed in both blood fed An. gambiae and An. funestus. Although this gene could not be validated with real time quantitative PCR, it serves as a viable target for future investigations. Since the pyrethroid resistant phenotype of southern African An. funestus has been linked to the over-expression of the duplicate copy gene CYP6P9, the expression levels of both copies of this gene were investigated. CYP6P9 and its copy, CYP6P13, showed a small but significant increase in expression in response to a blood meal. The increased expression of these major effect genes in response to blood feeding may be responsible for the increase in insecticide tolerance seen in the bottle bioassays. In an effort to repeat these experiments on wild caught An. funestus, field material was collected from Karonga in northern Malawi. Specimens were morphologically identified as members of the An. funestus group. However, attempts to molecularly identify them to species level failed. Through the use of ITS2 and D3 sequence analysis, cytogenetics and cross mating studies it was possible to conclude that these wild caught specimens were a new species. They have been provisionally named An. funestus-like.
5

The effects of pyrethroid resistance on transcription of metabolic enzymes in a major African Malaria vector, Anopheles funestus

Christian, Riann N 11 January 2012 (has links)
Anopheles funestus is a major vector of malaria in the southern African region. Insecticide resistance to pyrethroid and carbamate insecticides has been recorded in populations of this species in South Africa and Mozambique. This study aimed to determine the relationship between pyrethroid resistance and gene expression of two closely related genes, CYP6P9 and CYP6P13, by age and sex in a resistant strain An. funestus from southern Africa, FUMOZ-R. The insecticide susceptibility assays showed that percentage survival in both FUMOZ-R sexes significantly decreased as age increased. The mRNA expressions of CYP6P9 and CYP6P13 were higher in FUMOZ-R relative to the insecticide susceptible strain (FANG). The expression of permethrin resistance varies with age in An. funestus FUMOZ-R. The results indicate that other genes may also be involved in insecticide resistance. In addition to this, the expression profile of other metabolic genes involved in insecticide resistance was also investigated. A microarray based approach was used to identify genes differentially expressed in FUMOZ-R and FANG. As the full set of detoxification genes in An. funestus are unknown, this study investigated the utility of the An. gambiae detox chip to screen for differentially expressed detoxification genes in An. funestus. After optimization of the hybridisation conditions, over 90% of the probes showed a positive signal. Only three genes were significantly (P<0.001) differentially expressed in the females, CYP6P9, COI and CYP6M7. The same genes were also significantly differentially expressed in the adult males, together with an additional 21 transcripts. The third part of this study investigated the gene expression in the first instar, fourth instar and 3-day old adults in FUMOZ-R using the An. gambiae detox chip. The variation in metabolic enzyme gene transcription at the different developmental stages in An. funestus are not known. The identification of differentially transcribed genes at the different life stages provides some insight into the role and function of these genes. A large number of cytochrome P450s (monooxygenases), esterases, glutathione S-transferases (GSTs) and other additional genes were differentially expressed in all life stages. This study provided vital information regarding genes potentially involved in pyrethroid resistant and is the first to provide metabolic or detoxifying transcription gene information in An. funestus.
6

The effect of iron and iron chelators on the growth of an in vitro plasmodium falciparum culture.

Jairam, Karuna Thaker January 1991 (has links)
A DISSERTATION SUBMITTED TO THE FACULTY OF MEDICINE, UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG, FR THE DEGREE OF MASTER OF SCIENCE IN MEDICINE. / The influence of iron on the outcome of various infections have been extensively reviewed. Clinical observations suggests that iron deficiency may be protective against malaria. Various researchers have shown that certain iron chelators blocked the proliferation of plasmodium falciparum in vitro and in vivo. (Abbreviation abstract) / Andrew Chakane 2018

Page generated in 0.1164 seconds