• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparison of Ankle Kinematics between Soft and Semi-Rigid Ankle Orthoses for Field-Sport Activities

Becker, Shannon 05 December 2013 (has links)
Purpose of study: Examine ASO (soft) and Malleoloc semi-rigid stirrup (SRS) ankle orthosis designs on ankle kinematics during field-sport movements: sprint, one-legged jump, and 45-degree cut. Participants: 13 competitive Ultimate players who regularly wore an ankle orthosis during physical activity. Methods: ASO or Malleoloc orthosis was randomly assigned to each person. Kinematic data were captured while the participants performed several trials for each movement in a motion analysis laboratory. Participants repeated the protocol with the other orthosis. Results: ASO allowed significantly more plantar-flexion during weight acceptance of the planting foot in cutting (p=0.038). In jumping, the Malleoloc allowed significantly more eversion-inversion range during stance (p=0.048) and eversion-inversion angular velocity from midstance to toe-off (p=0.026). Qualitative data also showed a significant preference for ASO. Conclusion: Hypotheses that ankle inversion and eversion would be greater with the ASO; and plantar-flexion and dorsiflexion would be greater with the Malleoloc were refuted.
2

Comparison of Ankle Kinematics between Soft and Semi-Rigid Ankle Orthoses for Field-Sport Activities

Becker, Shannon January 2013 (has links)
Purpose of study: Examine ASO (soft) and Malleoloc semi-rigid stirrup (SRS) ankle orthosis designs on ankle kinematics during field-sport movements: sprint, one-legged jump, and 45-degree cut. Participants: 13 competitive Ultimate players who regularly wore an ankle orthosis during physical activity. Methods: ASO or Malleoloc orthosis was randomly assigned to each person. Kinematic data were captured while the participants performed several trials for each movement in a motion analysis laboratory. Participants repeated the protocol with the other orthosis. Results: ASO allowed significantly more plantar-flexion during weight acceptance of the planting foot in cutting (p=0.038). In jumping, the Malleoloc allowed significantly more eversion-inversion range during stance (p=0.048) and eversion-inversion angular velocity from midstance to toe-off (p=0.026). Qualitative data also showed a significant preference for ASO. Conclusion: Hypotheses that ankle inversion and eversion would be greater with the ASO; and plantar-flexion and dorsiflexion would be greater with the Malleoloc were refuted.

Page generated in 0.0411 seconds