• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Water-gas shift reaction over supported metal oxides with special reference to the cobalt manganese oxide system

22 January 2015 (has links)
No description available.
2

Selective aerobic oxidations catalyzed by manganese(III) complexes using redox-active ligands

Rolle, Clarence J. 08 November 2011 (has links)
Selective oxidations are important for the functionalization of compounds in organic synthesis and chemical industry. Using O2 as a terminal e- acceptor would be ideal because it is cheap and environmentally friendly, but aerobic oxidations are often prone to unselective free radical autoxidation. Recently developed palladium catalysts use O2 as a selective multi-electron oxidant for various organic transformations. Although these methods are powerful and sophisticated, the lower cost of base metals makes them attractive as potential alternatives. The challenge is to develop methods for effecting multi-electron transformations at metals that typically prefer one electron changes. To this end, the development of manganese(III) complexes containing redox-active ligands as catalysts for selective oxidase-type oxidation of organic substrates was pursued. Bis(tetrabromocatecholato) manganese(III) complexes were shown to aerobically oxidize catechols to form quinones and H2O2. This reactivity was extended to other alcohol and amine substrates. In these reactions, the non-innocent tetrabromocatecholate ligands may impart a multi-electron character to the metal. To directly probe the intermediacy of ligand-centered radicals in catalytic turnover, a series of structurally similar manganese(III) complexes with aminophenol-derived ligands were prepared and characterized. The capacity of these ligands to undergo low-energy redox changes, allowed for isolation of an electron transfer series spanning two redox states without a change in oxidation state at the metal center. The ligand-centered redox events were a key feature in aerobic homocoupling of Grignard reagents.
3

Development of Homogeneous Manganese and Iron Catalysts for Organic Transformations and Renewable Fuel Production

January 2016 (has links)
abstract: The late first row transition metals, being inexpensive and environmentally benign, have become very attractive for sustainable catalyst development. However, to overcome the detrimental one electron redox processes exhibited by these metals, the employment of redox non-innocent chelates turned out to be very useful. The Trovitch group has designed a series of pentadentate bis(imino)pyridine ligands (pyridine diimine, PDI) that are capable of binding the metal center beyond their 3-N,N,N core and also possess coordination flexibility. My research is focused on developing PDI-supported manganese catalysts for organic transformations and renewable fuel production. The thesis presents synthesis and characterization of a family of low valent (PDI)Mn complexes. Detailed electronic structure evaluation from spectroscopic and crystallographic data revealed electron transfer from the reduced metal center to the accessible ligand orbitals. One particular (PDI)Mn variant, (5-Ph2PPrPDI)Mn has been found to be the most efficient carbonyl hydrosilylation catalyst reported till date, achieving a maximum turnover frequency of up to 4950 min-1. This observation demanded a thorough investigation of the operative mechanism. A series of controlled stoichiometric reactions, detailed kinetic analysis, and relevant intermediate isolation suggest a mechanism that involves oxidative addition, carbonyl insertion, and reductive elimination. Noticing such remarkable efficiency of the (PDI)Mn system, it has been tested for application in renewable fuel generation. A modest efficiency for H2 production at an apparent pH of 8.4 have been achieved using a cationic Mn complex, [(Ph2PPrPDI)Mn(CO)]Br. Although, a detailed mechanistic investigation remained challenging due to complex instability, a set of relevant Mn(-I) intermediates have been isolated and characterized thoroughly. The dissertation also includes synthesis, characterization, and electronic structure evaluation of a series of Triphos supported iron complexes. Using this pincer chelate and either 2,2’-bipyridine (bpy) or 1,3,5,7-cyclooctatetraene (COT), a set of electronically interesting complexes have been isolated. Detailed electronic structure investigation using spectroscopy, magnetometry, crystallography, and DFT calculations revealed redox non-innocent behavior in the Bpy and COT ligands. Additionally, CO binding to the (Triphos)Fe system followed by reaction with borohydride reagents allowed for the isolation of some catalytically relevant and reactive iron hydride complexes. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2016

Page generated in 0.0632 seconds